低频三维聚焦三次五次非线性Schrödinger方程的阈值解

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Masaru Hamano, Hiroaki Kikuchi, Minami Watanabe
{"title":"低频三维聚焦三次五次非线性Schrödinger方程的阈值解","authors":"Masaru Hamano, Hiroaki Kikuchi, Minami Watanabe","doi":"10.4310/dpde.2023.v20.n4.a1","DOIUrl":null,"url":null,"abstract":"This paper addresses the focusing cubic-quintic nonlinear Schrodinger equation in three space dimensions. Especially, we study the global dynamics of solutions whose energy and mass equal to those of the ground state in the sprits of Duyckaerts and Merle (2009). When we try to obtain the corresponding result, we meet several difficulties due to the cubic-quintic nonlinearity. We overcome them by using the one-pass theorem (no return theorem) developed by Nakanishi and Schlag (2012).","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Threshold solutions for the 3D focusing cubic-quintic nonlinear Schrödinger equation at low frequencies\",\"authors\":\"Masaru Hamano, Hiroaki Kikuchi, Minami Watanabe\",\"doi\":\"10.4310/dpde.2023.v20.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the focusing cubic-quintic nonlinear Schrodinger equation in three space dimensions. Especially, we study the global dynamics of solutions whose energy and mass equal to those of the ground state in the sprits of Duyckaerts and Merle (2009). When we try to obtain the corresponding result, we meet several difficulties due to the cubic-quintic nonlinearity. We overcome them by using the one-pass theorem (no return theorem) developed by Nakanishi and Schlag (2012).\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2023.v20.n4.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/dpde.2023.v20.n4.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threshold solutions for the 3D focusing cubic-quintic nonlinear Schrödinger equation at low frequencies
This paper addresses the focusing cubic-quintic nonlinear Schrodinger equation in three space dimensions. Especially, we study the global dynamics of solutions whose energy and mass equal to those of the ground state in the sprits of Duyckaerts and Merle (2009). When we try to obtain the corresponding result, we meet several difficulties due to the cubic-quintic nonlinearity. We overcome them by using the one-pass theorem (no return theorem) developed by Nakanishi and Schlag (2012).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信