{"title":"具有奇异灵敏度和Lotka-Volterra竞争动力学的两种趋化系统的稳定性","authors":"Halil ibrahim Kurt, Wenxian Shen","doi":"10.3934/dcds.2023130","DOIUrl":null,"url":null,"abstract":"The current paper is concerned with the stabilization in the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, $ \\begin{equation} \\begin{cases} u_t = \\Delta u-\\chi_1 \\nabla\\cdot (\\frac{u}{w} \\nabla w)+u(a_1-b_1u-c_1v) , \\quad &x\\in \\Omega\\cr v_t = \\Delta v-\\chi_2 \\nabla\\cdot (\\frac{v}{w} \\nabla w)+v(a_2-b_2v-c_2u), \\quad &x\\in \\Omega\\cr 0 = \\Delta w-\\mu w +\\nu u+ \\lambda v, \\quad &x\\in \\Omega \\cr \\frac{\\partial u}{\\partial n} = \\frac{\\partial v}{\\partial n} = \\frac{\\partial w}{\\partial n} = 0, \\quad &x\\in\\partial\\Omega, \\end{cases} \\end{equation}~~~~(1) $ where $ \\Omega \\subset \\mathbb{R}^N $ is a bounded smooth domain, and $ \\chi_i $, $ a_i $, $ b_i $, $ c_i $ ($ i = 1, 2 $) and $ \\mu, \\, \\nu, \\, \\lambda $ are positive constants. In [25], among others, we proved that for any given nonnegative initial data $ u_0, v_0\\in C^0(\\bar\\Omega) $ with $ u_0+v_0\\not \\equiv 0 $, (1) has a unique globally defined classical solution $ (u(t, x;u_0, v_0), v(t, x;u_0, v_0), w(t, x;u_0, v_0)) $ with $ u(0, x;u_0, v_0) = u_0(x) $ and $ v(0, x;u_0, v_0) = v_0(x) $ in any space dimensional setting with any positive constants $ \\chi_i, a_i, b_i, c_i $ ($ i = 1, 2 $) and $ \\mu, \\nu, \\lambda $. In this paper, we assume that the competition in (1) is weak in the sense that $ \\frac{c_1}{b_2}<\\frac{a_1}{a_2}, \\quad \\frac{c_2}{b_1}<\\frac{a_2}{a_1}. $ Then (1) has a unique positive constant solution $ (u^*, v^*, w^*) $, where $ u^* = \\frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2}, \\quad v^* = \\frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \\quad w^* = \\frac{\\nu}{\\mu}u^*+\\frac{\\lambda}{\\mu} v^*. $ We obtain some explicit conditions on $ \\chi_1, \\chi_2 $ which ensure that the positive constant solution $ (u^*, v^*, w^*) $ is globally stable, that is, for any given nonnegative initial data $ u_0, v_0\\in C^0(\\bar\\Omega) $ with $ u_0\\not \\equiv 0 $ and $ v_0\\not \\equiv 0 $, $ \\lim\\limits_{t\\to\\infty}\\Big(\\|u(t, \\cdot;u_0, v_0)-u^*\\|_\\infty +\\|v(t, \\cdot;u_0, v_0)-v^*\\|_\\infty+\\|w(t, \\cdot;u_0, v_0)-w^*\\|_\\infty\\Big) = 0. $","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization in two-species chemotaxis systems with singular sensitivity and Lotka-Volterra competitive kinetics\",\"authors\":\"Halil ibrahim Kurt, Wenxian Shen\",\"doi\":\"10.3934/dcds.2023130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current paper is concerned with the stabilization in the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, $ \\\\begin{equation} \\\\begin{cases} u_t = \\\\Delta u-\\\\chi_1 \\\\nabla\\\\cdot (\\\\frac{u}{w} \\\\nabla w)+u(a_1-b_1u-c_1v) , \\\\quad &x\\\\in \\\\Omega\\\\cr v_t = \\\\Delta v-\\\\chi_2 \\\\nabla\\\\cdot (\\\\frac{v}{w} \\\\nabla w)+v(a_2-b_2v-c_2u), \\\\quad &x\\\\in \\\\Omega\\\\cr 0 = \\\\Delta w-\\\\mu w +\\\\nu u+ \\\\lambda v, \\\\quad &x\\\\in \\\\Omega \\\\cr \\\\frac{\\\\partial u}{\\\\partial n} = \\\\frac{\\\\partial v}{\\\\partial n} = \\\\frac{\\\\partial w}{\\\\partial n} = 0, \\\\quad &x\\\\in\\\\partial\\\\Omega, \\\\end{cases} \\\\end{equation}~~~~(1) $ where $ \\\\Omega \\\\subset \\\\mathbb{R}^N $ is a bounded smooth domain, and $ \\\\chi_i $, $ a_i $, $ b_i $, $ c_i $ ($ i = 1, 2 $) and $ \\\\mu, \\\\, \\\\nu, \\\\, \\\\lambda $ are positive constants. In [25], among others, we proved that for any given nonnegative initial data $ u_0, v_0\\\\in C^0(\\\\bar\\\\Omega) $ with $ u_0+v_0\\\\not \\\\equiv 0 $, (1) has a unique globally defined classical solution $ (u(t, x;u_0, v_0), v(t, x;u_0, v_0), w(t, x;u_0, v_0)) $ with $ u(0, x;u_0, v_0) = u_0(x) $ and $ v(0, x;u_0, v_0) = v_0(x) $ in any space dimensional setting with any positive constants $ \\\\chi_i, a_i, b_i, c_i $ ($ i = 1, 2 $) and $ \\\\mu, \\\\nu, \\\\lambda $. In this paper, we assume that the competition in (1) is weak in the sense that $ \\\\frac{c_1}{b_2}<\\\\frac{a_1}{a_2}, \\\\quad \\\\frac{c_2}{b_1}<\\\\frac{a_2}{a_1}. $ Then (1) has a unique positive constant solution $ (u^*, v^*, w^*) $, where $ u^* = \\\\frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2}, \\\\quad v^* = \\\\frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \\\\quad w^* = \\\\frac{\\\\nu}{\\\\mu}u^*+\\\\frac{\\\\lambda}{\\\\mu} v^*. $ We obtain some explicit conditions on $ \\\\chi_1, \\\\chi_2 $ which ensure that the positive constant solution $ (u^*, v^*, w^*) $ is globally stable, that is, for any given nonnegative initial data $ u_0, v_0\\\\in C^0(\\\\bar\\\\Omega) $ with $ u_0\\\\not \\\\equiv 0 $ and $ v_0\\\\not \\\\equiv 0 $, $ \\\\lim\\\\limits_{t\\\\to\\\\infty}\\\\Big(\\\\|u(t, \\\\cdot;u_0, v_0)-u^*\\\\|_\\\\infty +\\\\|v(t, \\\\cdot;u_0, v_0)-v^*\\\\|_\\\\infty+\\\\|w(t, \\\\cdot;u_0, v_0)-w^*\\\\|_\\\\infty\\\\Big) = 0. $\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023130\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023130","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stabilization in two-species chemotaxis systems with singular sensitivity and Lotka-Volterra competitive kinetics
The current paper is concerned with the stabilization in the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, $ \begin{equation} \begin{cases} u_t = \Delta u-\chi_1 \nabla\cdot (\frac{u}{w} \nabla w)+u(a_1-b_1u-c_1v) , \quad &x\in \Omega\cr v_t = \Delta v-\chi_2 \nabla\cdot (\frac{v}{w} \nabla w)+v(a_2-b_2v-c_2u), \quad &x\in \Omega\cr 0 = \Delta w-\mu w +\nu u+ \lambda v, \quad &x\in \Omega \cr \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = \frac{\partial w}{\partial n} = 0, \quad &x\in\partial\Omega, \end{cases} \end{equation}~~~~(1) $ where $ \Omega \subset \mathbb{R}^N $ is a bounded smooth domain, and $ \chi_i $, $ a_i $, $ b_i $, $ c_i $ ($ i = 1, 2 $) and $ \mu, \, \nu, \, \lambda $ are positive constants. In [25], among others, we proved that for any given nonnegative initial data $ u_0, v_0\in C^0(\bar\Omega) $ with $ u_0+v_0\not \equiv 0 $, (1) has a unique globally defined classical solution $ (u(t, x;u_0, v_0), v(t, x;u_0, v_0), w(t, x;u_0, v_0)) $ with $ u(0, x;u_0, v_0) = u_0(x) $ and $ v(0, x;u_0, v_0) = v_0(x) $ in any space dimensional setting with any positive constants $ \chi_i, a_i, b_i, c_i $ ($ i = 1, 2 $) and $ \mu, \nu, \lambda $. In this paper, we assume that the competition in (1) is weak in the sense that $ \frac{c_1}{b_2}<\frac{a_1}{a_2}, \quad \frac{c_2}{b_1}<\frac{a_2}{a_1}. $ Then (1) has a unique positive constant solution $ (u^*, v^*, w^*) $, where $ u^* = \frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2}, \quad v^* = \frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \quad w^* = \frac{\nu}{\mu}u^*+\frac{\lambda}{\mu} v^*. $ We obtain some explicit conditions on $ \chi_1, \chi_2 $ which ensure that the positive constant solution $ (u^*, v^*, w^*) $ is globally stable, that is, for any given nonnegative initial data $ u_0, v_0\in C^0(\bar\Omega) $ with $ u_0\not \equiv 0 $ and $ v_0\not \equiv 0 $, $ \lim\limits_{t\to\infty}\Big(\|u(t, \cdot;u_0, v_0)-u^*\|_\infty +\|v(t, \cdot;u_0, v_0)-v^*\|_\infty+\|w(t, \cdot;u_0, v_0)-w^*\|_\infty\Big) = 0. $
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.