准一维层状半导体Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub>单晶

None Cheng Qiu-Zhen, None Huang Yin, None Li Yu-Hui, None Zhang Kai, None Xian Guo-Yu, None Liu He-Yuan, None Che Bing-Yu, None Pan Lu-Lu, None Han Ye-Chao, None Zhu Ke, None Qi Qi, None Xie Yao-Feng, None Pan Jin-Bo, None Chen Hai-Long, None Li Yong-Feng, None Guo Hui, None Yang Hai-Tao, None Gao Hong-Jun
{"title":"准一维层状半导体Nb&lt;sub&gt;4&lt;/sub&gt;P&lt;sub&gt;2&lt;/sub&gt;S&lt;sub&gt;21&lt;/sub&gt;单晶","authors":"None Cheng Qiu-Zhen, None Huang Yin, None Li Yu-Hui, None Zhang Kai, None Xian Guo-Yu, None Liu He-Yuan, None Che Bing-Yu, None Pan Lu-Lu, None Han Ye-Chao, None Zhu Ke, None Qi Qi, None Xie Yao-Feng, None Pan Jin-Bo, None Chen Hai-Long, None Li Yong-Feng, None Guo Hui, None Yang Hai-Tao, None Gao Hong-Jun","doi":"10.7498/aps.72.20231539","DOIUrl":null,"url":null,"abstract":"Transition-metal phosphorous chalcogenide <i>M</i>PS (<i>M</i> = transition metal), an emerging type of two-dimensional (2D) van der Waals material with the unique optical and opto-electronic properties, has received much attention. The quasi-one-dimensional chain structure of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> will possess the strong anisotropic optical and photoelectric properties. Therefore, the single crystal and low-dimensional materials of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> have potential applications in new polarization controllers, polarization-sensitive photoelectronic detectors, etc. However, there is still a lack of research on the anisotropic optical properties of the high-quality Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals. Herein, the millimeter-sized Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals are successfully prepared by the chemical vapor transport method. The chemical composition, the crystal structure and the anisotropic optical properties of the Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals are carefully analyzed. The energy dispersive X-ray spectroscopy results show that the element distribution is uniform and the element ratio is close to the stoichiometric ratio. The X-ray diffraction and the transmission electron microscopy results show a good crystallinity. The absorption spectra shows that the optical band gap of the Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystal is 1.8 eV. Interestingly, the Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystal can be mechanically exfoliated to obtain few-layer material. The thickness-dependent Raman spectra show that the Raman vibration peaks of bulk and few-layer Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> each have only a weak shift, indicating a weak interlayer interaction in the Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystal. In order to make an in-depth study of the optical properties of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals, the polarized-dependent Raman spectra and the femtosecond transient absorption (TA) spectra by using pump pulses and probe pulses with a wavelength of 400 nm and a wavelength range of 500–700 nm are recorded. Importantly, the polarized-dependent Raman scattering spectra with the angle-dependent measurements reveal that the intensity of Raman peak at 202 cm<sup>–1</sup> and at 489 cm<sup>–1</sup> show a 2-fold symmetry and a 4-fold symmetry in the parallel and vertical polarization configurations, respectively. Moreover, the results of ultrafast carrier dynamics with the in-plane rotation angles of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals in the parallel polarization configurations, clearly indicate that both the hot carrier number and the relaxation rate after photoexcitation have the in-plane anisotropic properties. These results are useful in understanding the in-plane anisotropic optical properties of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystal, which can further promote their applications in the low-dimensional angle-dependent optoelectronics.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-plane optical anisotropy of quasi-one-dimensional layered semiconductor Nb&lt;sub&gt;4&lt;/sub&gt;P&lt;sub&gt;2&lt;/sub&gt;S&lt;sub&gt;21&lt;/sub&gt; single crystal\",\"authors\":\"None Cheng Qiu-Zhen, None Huang Yin, None Li Yu-Hui, None Zhang Kai, None Xian Guo-Yu, None Liu He-Yuan, None Che Bing-Yu, None Pan Lu-Lu, None Han Ye-Chao, None Zhu Ke, None Qi Qi, None Xie Yao-Feng, None Pan Jin-Bo, None Chen Hai-Long, None Li Yong-Feng, None Guo Hui, None Yang Hai-Tao, None Gao Hong-Jun\",\"doi\":\"10.7498/aps.72.20231539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition-metal phosphorous chalcogenide <i>M</i>PS (<i>M</i> = transition metal), an emerging type of two-dimensional (2D) van der Waals material with the unique optical and opto-electronic properties, has received much attention. The quasi-one-dimensional chain structure of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> will possess the strong anisotropic optical and photoelectric properties. Therefore, the single crystal and low-dimensional materials of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> have potential applications in new polarization controllers, polarization-sensitive photoelectronic detectors, etc. However, there is still a lack of research on the anisotropic optical properties of the high-quality Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals. Herein, the millimeter-sized Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals are successfully prepared by the chemical vapor transport method. The chemical composition, the crystal structure and the anisotropic optical properties of the Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals are carefully analyzed. The energy dispersive X-ray spectroscopy results show that the element distribution is uniform and the element ratio is close to the stoichiometric ratio. The X-ray diffraction and the transmission electron microscopy results show a good crystallinity. The absorption spectra shows that the optical band gap of the Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystal is 1.8 eV. Interestingly, the Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystal can be mechanically exfoliated to obtain few-layer material. The thickness-dependent Raman spectra show that the Raman vibration peaks of bulk and few-layer Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> each have only a weak shift, indicating a weak interlayer interaction in the Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystal. In order to make an in-depth study of the optical properties of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals, the polarized-dependent Raman spectra and the femtosecond transient absorption (TA) spectra by using pump pulses and probe pulses with a wavelength of 400 nm and a wavelength range of 500–700 nm are recorded. Importantly, the polarized-dependent Raman scattering spectra with the angle-dependent measurements reveal that the intensity of Raman peak at 202 cm<sup>–1</sup> and at 489 cm<sup>–1</sup> show a 2-fold symmetry and a 4-fold symmetry in the parallel and vertical polarization configurations, respectively. Moreover, the results of ultrafast carrier dynamics with the in-plane rotation angles of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystals in the parallel polarization configurations, clearly indicate that both the hot carrier number and the relaxation rate after photoexcitation have the in-plane anisotropic properties. These results are useful in understanding the in-plane anisotropic optical properties of Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystal, which can further promote their applications in the low-dimensional angle-dependent optoelectronics.\",\"PeriodicalId\":10252,\"journal\":{\"name\":\"Chinese Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20231539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20231539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属硫化物磷<i>M</i>PS (<i>M</i>过渡金属(transition metal)是一种新兴的二维(2D)范德华材料,具有独特的光学和光电性质,受到了广泛的关注。Nb<sub>4& gt; /sub>P<sub>2</sub>S<sub>21</sub>将具有较强的各向异性光学和光电性能。因此,Nb<sub>4& gt; /sub>P<sub>2</sub>S<sub>21</sub>在新型偏振控制器、偏振敏感光电探测器等方面具有潜在的应用前景。然而,对于高质量的Nb<sub>4& gt; /sub>P<sub>2</sub>S<sub>21</sub>单一的晶体。在此,毫米尺寸的Nb<sub>4</sub>P<sub>2</sub> 21</sub>采用化学气相输运法制备了单晶。Nb<sub>4& gt; /sub>P<sub>2</sub>S<sub>21</sub>仔细分析单晶。能量色散x射线谱分析结果表明,元素分布均匀,元素比接近化学计量比。x射线衍射和透射电镜结果表明,该材料具有良好的结晶度。吸收光谱表明:Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub>单晶为1.8 eV。有趣的是,Nb<sub>4& gt; /sub>P<sub>2& gt; /sub>单晶可以机械剥离,得到少层材料。随厚度变化的拉曼光谱表明,体层和少层Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub>每一个都只有一个弱位移,表明在Nb<sub>4& gt; /sub>P<sub>2</sub>S<sub>21</sub>单晶。为了深入研究Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub>记录了波长为400 nm和500 ~ 700 nm的泵浦脉冲和探测脉冲作用下的单晶、偏振相关拉曼光谱和飞秒瞬态吸收光谱。重要的是,偏振相关的拉曼散射光谱与角度相关的测量结果表明,拉曼强度在202 cm<sup> -1</sup>在489厘米<sup> -1</sup>在平行极化构型和垂直极化构型中分别表现出2倍对称性和4倍对称性。此外,在Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub>平行极化构型的单晶清楚地表明,光激发后的热载流子数和弛豫速率都具有面内各向异性。这些结果有助于理解Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub>这可以进一步促进其在低维角相关光电子学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-plane optical anisotropy of quasi-one-dimensional layered semiconductor Nb<sub>4</sub>P<sub>2</sub>S<sub>21</sub> single crystal
Transition-metal phosphorous chalcogenide MPS (M = transition metal), an emerging type of two-dimensional (2D) van der Waals material with the unique optical and opto-electronic properties, has received much attention. The quasi-one-dimensional chain structure of Nb4P2S21 will possess the strong anisotropic optical and photoelectric properties. Therefore, the single crystal and low-dimensional materials of Nb4P2S21 have potential applications in new polarization controllers, polarization-sensitive photoelectronic detectors, etc. However, there is still a lack of research on the anisotropic optical properties of the high-quality Nb4P2S21 single crystals. Herein, the millimeter-sized Nb4P2S21 single crystals are successfully prepared by the chemical vapor transport method. The chemical composition, the crystal structure and the anisotropic optical properties of the Nb4P2S21 single crystals are carefully analyzed. The energy dispersive X-ray spectroscopy results show that the element distribution is uniform and the element ratio is close to the stoichiometric ratio. The X-ray diffraction and the transmission electron microscopy results show a good crystallinity. The absorption spectra shows that the optical band gap of the Nb4P2S21 single crystal is 1.8 eV. Interestingly, the Nb4P2S21 single crystal can be mechanically exfoliated to obtain few-layer material. The thickness-dependent Raman spectra show that the Raman vibration peaks of bulk and few-layer Nb4P2S21 each have only a weak shift, indicating a weak interlayer interaction in the Nb4P2S21 single crystal. In order to make an in-depth study of the optical properties of Nb4P2S21 single crystals, the polarized-dependent Raman spectra and the femtosecond transient absorption (TA) spectra by using pump pulses and probe pulses with a wavelength of 400 nm and a wavelength range of 500–700 nm are recorded. Importantly, the polarized-dependent Raman scattering spectra with the angle-dependent measurements reveal that the intensity of Raman peak at 202 cm–1 and at 489 cm–1 show a 2-fold symmetry and a 4-fold symmetry in the parallel and vertical polarization configurations, respectively. Moreover, the results of ultrafast carrier dynamics with the in-plane rotation angles of Nb4P2S21 single crystals in the parallel polarization configurations, clearly indicate that both the hot carrier number and the relaxation rate after photoexcitation have the in-plane anisotropic properties. These results are useful in understanding the in-plane anisotropic optical properties of Nb4P2S21 single crystal, which can further promote their applications in the low-dimensional angle-dependent optoelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信