具有对数非线性的伪抛物型$ p $-Kirchhoff方程的放大

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hui Yang
{"title":"具有对数非线性的伪抛物型$ p $-Kirchhoff方程的放大","authors":"Hui Yang","doi":"10.3934/eect.2023053","DOIUrl":null,"url":null,"abstract":"In this paper, an initial boundary value problem for a pseudo-parabolic type $ p $-Kirchhoff equation with logarithmic nonlinearity is investigated. By proving the invariance of the unstable set under the semi-flow of this problem and adopting the Levine's concavity argument, a general finite time blow-up criterion for this problem is established, which in particular implies that for some initial data, the problem admits finite time blow-up solutions at arbitrarily high initial energy level. Moreover, the lifespan of the blow-up solutions is estimated from above.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up for a pseudo-parabolic $ p $-Kirchhoff equation with logarithmic nonlinearity\",\"authors\":\"Hui Yang\",\"doi\":\"10.3934/eect.2023053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an initial boundary value problem for a pseudo-parabolic type $ p $-Kirchhoff equation with logarithmic nonlinearity is investigated. By proving the invariance of the unstable set under the semi-flow of this problem and adopting the Levine's concavity argument, a general finite time blow-up criterion for this problem is established, which in particular implies that for some initial data, the problem admits finite time blow-up solutions at arbitrarily high initial energy level. Moreover, the lifespan of the blow-up solutions is estimated from above.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2023053\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/eect.2023053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有对数非线性的伪抛物型$ p $-Kirchhoff方程的初边值问题。通过证明该问题半流下不稳定集的不变性,采用Levine的凹性论证,建立了该问题的一般有限时间爆破判据,特别表明对于某些初始数据,该问题在任意高的初始能级上允许有限时间爆破解。此外,爆破解决方案的寿命是从上面估计的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up for a pseudo-parabolic $ p $-Kirchhoff equation with logarithmic nonlinearity
In this paper, an initial boundary value problem for a pseudo-parabolic type $ p $-Kirchhoff equation with logarithmic nonlinearity is investigated. By proving the invariance of the unstable set under the semi-flow of this problem and adopting the Levine's concavity argument, a general finite time blow-up criterion for this problem is established, which in particular implies that for some initial data, the problem admits finite time blow-up solutions at arbitrarily high initial energy level. Moreover, the lifespan of the blow-up solutions is estimated from above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信