{"title":"真菌水解食物垃圾:常用底物、条件和微生物的综述","authors":"Indra Berzina, Kriss Spalvins","doi":"10.2478/rtuect-2023-0047","DOIUrl":null,"url":null,"abstract":"Abstract During food production significant amounts of organic waste is generated annually that can have a negative effect on the environment due to lack of efficient utilisation solutions and insufficient disposal practices. Fungi and their remarkable abilities to produce enzymes can be applied for hydrolysing different types of food waste in simpler sugars. Under optimal conditions, fungal hydrolysis of food waste can be rapid and efficient. Currently, the capacity of this process has only been briefly demonstrated in previous studies. This review describes different practices demonstrating the potential of fungal hydrolysis use for efficient resource management. The focus was on what organisms, waste substrates and parameters as temperature, pH level, have been applied in previous studies as well as glucose recovery yields. It was concluded that food waste can be efficiently hydrolysed and used as a substrate for the downstream production of value-added products using sequential fermentation. The optimal temperature was concluded to be above 45 °C, but the optimal pH level may vary depending on used organism and substate. In future research the possibility of optimizing fungal strains, creating mutants with enhanced enzyme-producing abilities, and application of more GRAS fungal species should be investigated. To conduct valorisation tests on new residues for fungal hydrolysis researchers must collaborate with manufacturers, thus exploring the suitability of a wider range of waste residues for fungal hydrolysis.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"136 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal Hydrolysis of Food Waste: Review of Used Substrates, Conditions, and Microorganisms\",\"authors\":\"Indra Berzina, Kriss Spalvins\",\"doi\":\"10.2478/rtuect-2023-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract During food production significant amounts of organic waste is generated annually that can have a negative effect on the environment due to lack of efficient utilisation solutions and insufficient disposal practices. Fungi and their remarkable abilities to produce enzymes can be applied for hydrolysing different types of food waste in simpler sugars. Under optimal conditions, fungal hydrolysis of food waste can be rapid and efficient. Currently, the capacity of this process has only been briefly demonstrated in previous studies. This review describes different practices demonstrating the potential of fungal hydrolysis use for efficient resource management. The focus was on what organisms, waste substrates and parameters as temperature, pH level, have been applied in previous studies as well as glucose recovery yields. It was concluded that food waste can be efficiently hydrolysed and used as a substrate for the downstream production of value-added products using sequential fermentation. The optimal temperature was concluded to be above 45 °C, but the optimal pH level may vary depending on used organism and substate. In future research the possibility of optimizing fungal strains, creating mutants with enhanced enzyme-producing abilities, and application of more GRAS fungal species should be investigated. To conduct valorisation tests on new residues for fungal hydrolysis researchers must collaborate with manufacturers, thus exploring the suitability of a wider range of waste residues for fungal hydrolysis.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2023-0047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Fungal Hydrolysis of Food Waste: Review of Used Substrates, Conditions, and Microorganisms
Abstract During food production significant amounts of organic waste is generated annually that can have a negative effect on the environment due to lack of efficient utilisation solutions and insufficient disposal practices. Fungi and their remarkable abilities to produce enzymes can be applied for hydrolysing different types of food waste in simpler sugars. Under optimal conditions, fungal hydrolysis of food waste can be rapid and efficient. Currently, the capacity of this process has only been briefly demonstrated in previous studies. This review describes different practices demonstrating the potential of fungal hydrolysis use for efficient resource management. The focus was on what organisms, waste substrates and parameters as temperature, pH level, have been applied in previous studies as well as glucose recovery yields. It was concluded that food waste can be efficiently hydrolysed and used as a substrate for the downstream production of value-added products using sequential fermentation. The optimal temperature was concluded to be above 45 °C, but the optimal pH level may vary depending on used organism and substate. In future research the possibility of optimizing fungal strains, creating mutants with enhanced enzyme-producing abilities, and application of more GRAS fungal species should be investigated. To conduct valorisation tests on new residues for fungal hydrolysis researchers must collaborate with manufacturers, thus exploring the suitability of a wider range of waste residues for fungal hydrolysis.
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.