Marzia Bisi, Maria Groppi, Enrico Lucchin, Giorgio Martalò
{"title":"惰性气体混合物的混合玻尔兹曼- bgk模型","authors":"Marzia Bisi, Maria Groppi, Enrico Lucchin, Giorgio Martalò","doi":"10.3934/krm.2023037","DOIUrl":null,"url":null,"abstract":"We propose a mixed Boltzmann–BGK model for mixtures of monatomic gases, where some kinds of collisions are described by bi–species Boltzmann operators and the others by the binary BGK terms given in [Bobylev et al., Kinetic and Related Models 11 (2018)], that is the relaxation model for mixtures with the closest structure to the Boltzmann one. At first, we assume that collisions occurring within the same species (intra-species) are modelled by Boltzmann operators, while interactions between different constituents (inter-species) are described by BGK terms. This option allows us to rigorously derive hydrodynamic equations not only in the classical collision dominated regime, but also in situations with intra–species collisions playing the dominant role (as in mixtures with very disparate particle masses). Then, we present a general form of this mixed Boltzmann–BGK model, characterized by further parameters allowing us to select which binary interactions have to be described by Boltzmann integrals or by BGK operators. We prove that this model preserves conservations of global momentum and energy, positivity of all temperatures and the validity of Boltzmann H-theorem, allowing us to conclude that the unique admissible equilibrium state is the expected Maxwellian distribution with all species sharing a common mean velocity and a common temperature.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mixed Boltzmann–BGK model for inert gas mixtures\",\"authors\":\"Marzia Bisi, Maria Groppi, Enrico Lucchin, Giorgio Martalò\",\"doi\":\"10.3934/krm.2023037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a mixed Boltzmann–BGK model for mixtures of monatomic gases, where some kinds of collisions are described by bi–species Boltzmann operators and the others by the binary BGK terms given in [Bobylev et al., Kinetic and Related Models 11 (2018)], that is the relaxation model for mixtures with the closest structure to the Boltzmann one. At first, we assume that collisions occurring within the same species (intra-species) are modelled by Boltzmann operators, while interactions between different constituents (inter-species) are described by BGK terms. This option allows us to rigorously derive hydrodynamic equations not only in the classical collision dominated regime, but also in situations with intra–species collisions playing the dominant role (as in mixtures with very disparate particle masses). Then, we present a general form of this mixed Boltzmann–BGK model, characterized by further parameters allowing us to select which binary interactions have to be described by Boltzmann integrals or by BGK operators. We prove that this model preserves conservations of global momentum and energy, positivity of all temperatures and the validity of Boltzmann H-theorem, allowing us to conclude that the unique admissible equilibrium state is the expected Maxwellian distribution with all species sharing a common mean velocity and a common temperature.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2023037\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/krm.2023037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A mixed Boltzmann–BGK model for inert gas mixtures
We propose a mixed Boltzmann–BGK model for mixtures of monatomic gases, where some kinds of collisions are described by bi–species Boltzmann operators and the others by the binary BGK terms given in [Bobylev et al., Kinetic and Related Models 11 (2018)], that is the relaxation model for mixtures with the closest structure to the Boltzmann one. At first, we assume that collisions occurring within the same species (intra-species) are modelled by Boltzmann operators, while interactions between different constituents (inter-species) are described by BGK terms. This option allows us to rigorously derive hydrodynamic equations not only in the classical collision dominated regime, but also in situations with intra–species collisions playing the dominant role (as in mixtures with very disparate particle masses). Then, we present a general form of this mixed Boltzmann–BGK model, characterized by further parameters allowing us to select which binary interactions have to be described by Boltzmann integrals or by BGK operators. We prove that this model preserves conservations of global momentum and energy, positivity of all temperatures and the validity of Boltzmann H-theorem, allowing us to conclude that the unique admissible equilibrium state is the expected Maxwellian distribution with all species sharing a common mean velocity and a common temperature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.