{"title":"线性二次正反向平均场系统的混合纳什博弈与社会最优","authors":"Xinwei Feng, Yiwei Lin","doi":"10.3934/mcrf.2023038","DOIUrl":null,"url":null,"abstract":"We consider a new class of mixed linear-quadratic Nash games and social optimization for two types of interactive agents. One is called a major agent and the others are minor agents. By 'mixed', we mean that all minor agents team up with each other to compete against this major agent for their contradictory cost functions. Different from the standard setup, this major's state is governed by some linear stochastic differential equation where the diffusion term and drift term both contain a control process, while the states of these minors are all weakly-coupled and driven by some linear backward stochastic differential equations because their terminal conditions are specified. To construct decentralized strategies for these two types of agents respectively, the backward person-by-person optimization method, combining some variational method and mean-field approximation are applied. Under some suitable conditions, we also verify the asymptotic optimality of these decentralized strategies.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"2015 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed Nash games and social optima for linear-quadratic forward-backward mean-field systems\",\"authors\":\"Xinwei Feng, Yiwei Lin\",\"doi\":\"10.3934/mcrf.2023038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a new class of mixed linear-quadratic Nash games and social optimization for two types of interactive agents. One is called a major agent and the others are minor agents. By 'mixed', we mean that all minor agents team up with each other to compete against this major agent for their contradictory cost functions. Different from the standard setup, this major's state is governed by some linear stochastic differential equation where the diffusion term and drift term both contain a control process, while the states of these minors are all weakly-coupled and driven by some linear backward stochastic differential equations because their terminal conditions are specified. To construct decentralized strategies for these two types of agents respectively, the backward person-by-person optimization method, combining some variational method and mean-field approximation are applied. Under some suitable conditions, we also verify the asymptotic optimality of these decentralized strategies.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2023038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mcrf.2023038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Mixed Nash games and social optima for linear-quadratic forward-backward mean-field systems
We consider a new class of mixed linear-quadratic Nash games and social optimization for two types of interactive agents. One is called a major agent and the others are minor agents. By 'mixed', we mean that all minor agents team up with each other to compete against this major agent for their contradictory cost functions. Different from the standard setup, this major's state is governed by some linear stochastic differential equation where the diffusion term and drift term both contain a control process, while the states of these minors are all weakly-coupled and driven by some linear backward stochastic differential equations because their terminal conditions are specified. To construct decentralized strategies for these two types of agents respectively, the backward person-by-person optimization method, combining some variational method and mean-field approximation are applied. Under some suitable conditions, we also verify the asymptotic optimality of these decentralized strategies.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.