基于轻量级OpenPose的密集时空图卷积网络跌倒检测

Xiaorui Zhang, Qijian Xie, Wei Sun, Yongjun Ren, Mithun Mukherjee
{"title":"基于轻量级OpenPose的密集时空图卷积网络跌倒检测","authors":"Xiaorui Zhang, Qijian Xie, Wei Sun, Yongjun Ren, Mithun Mukherjee","doi":"10.32604/cmc.2023.042561","DOIUrl":null,"url":null,"abstract":"Fall behavior is closely related to high mortality in the elderly, so fall detection becomes an important and urgent research area. However, the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy. To solve the above problems, this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose. Lightweight OpenPose uses MobileNet as a feature extraction network, and the prediction layer uses bottleneck-asymmetric structure, thus reducing the amount of the network. The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1 × 1 convolution and replaces the 7 × 7 convolution structure with the asymmetric structure of 1 × 7 convolution, 7 × 1 convolution, and 7 × 7 convolution in parallel. The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks, and the convolutional layers in each dense block are connected, thus improving the feature transitivity, enhancing the network’s ability to extract features, thus improving the detection accuracy. Two representative datasets, Multiple Cameras Fall dataset (MCF), and Nanyang Technological University Red Green Blue + Depth Action Recognition dataset (NTU RGB + D), are selected for our experiments, among which NTU RGB + D has two evaluation benchmarks. The results show that the proposed model is superior to the current fall detection models. The accuracy of this network on the MCF dataset is 96.3%, and the accuracies on the two evaluation benchmarks of the NTU RGB + D dataset are 85.6% and 93.5%, respectively.","PeriodicalId":93535,"journal":{"name":"Computers, materials & continua","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dense Spatial-Temporal Graph Convolutional Network Based on Lightweight OpenPose for Detecting Falls\",\"authors\":\"Xiaorui Zhang, Qijian Xie, Wei Sun, Yongjun Ren, Mithun Mukherjee\",\"doi\":\"10.32604/cmc.2023.042561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fall behavior is closely related to high mortality in the elderly, so fall detection becomes an important and urgent research area. However, the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy. To solve the above problems, this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose. Lightweight OpenPose uses MobileNet as a feature extraction network, and the prediction layer uses bottleneck-asymmetric structure, thus reducing the amount of the network. The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1 × 1 convolution and replaces the 7 × 7 convolution structure with the asymmetric structure of 1 × 7 convolution, 7 × 1 convolution, and 7 × 7 convolution in parallel. The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks, and the convolutional layers in each dense block are connected, thus improving the feature transitivity, enhancing the network’s ability to extract features, thus improving the detection accuracy. Two representative datasets, Multiple Cameras Fall dataset (MCF), and Nanyang Technological University Red Green Blue + Depth Action Recognition dataset (NTU RGB + D), are selected for our experiments, among which NTU RGB + D has two evaluation benchmarks. The results show that the proposed model is superior to the current fall detection models. The accuracy of this network on the MCF dataset is 96.3%, and the accuracies on the two evaluation benchmarks of the NTU RGB + D dataset are 85.6% and 93.5%, respectively.\",\"PeriodicalId\":93535,\"journal\":{\"name\":\"Computers, materials & continua\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers, materials & continua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/cmc.2023.042561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers, materials & continua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/cmc.2023.042561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跌倒行为与老年人的高死亡率密切相关,因此跌倒检测成为一个重要而紧迫的研究领域。然而,现有的跌倒检测方法由于计算量大,检测精度差,难以在日常生活中应用。为了解决上述问题,本文提出了一种基于轻量级OpenPose的密集时空图卷积网络。轻量级OpenPose采用MobileNet作为特征提取网络,预测层采用瓶颈不对称结构,减少了网络的数量。瓶颈不对称结构通过1 × 1卷积压缩特征映射的输入通道数,并用1 × 7卷积、7 × 1卷积、7 × 7卷积并行的不对称结构代替7 × 7卷积结构。时空图卷积网络将多层卷积划分为密集块,每个密集块中的卷积层相互连接,从而提高了特征传递性,增强了网络提取特征的能力,从而提高了检测精度。我们的实验选择了两个具有代表性的数据集,即Multiple Cameras Fall数据集(MCF)和南洋理工大学红绿蓝+深度动作识别数据集(NTU RGB + D),其中NTU RGB + D有两个评估基准。结果表明,该模型优于现有的跌落检测模型。该网络在MCF数据集上的准确率为96.3%,在NTU RGB + D数据集的两个评价基准上的准确率分别为85.6%和93.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dense Spatial-Temporal Graph Convolutional Network Based on Lightweight OpenPose for Detecting Falls
Fall behavior is closely related to high mortality in the elderly, so fall detection becomes an important and urgent research area. However, the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy. To solve the above problems, this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose. Lightweight OpenPose uses MobileNet as a feature extraction network, and the prediction layer uses bottleneck-asymmetric structure, thus reducing the amount of the network. The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1 × 1 convolution and replaces the 7 × 7 convolution structure with the asymmetric structure of 1 × 7 convolution, 7 × 1 convolution, and 7 × 7 convolution in parallel. The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks, and the convolutional layers in each dense block are connected, thus improving the feature transitivity, enhancing the network’s ability to extract features, thus improving the detection accuracy. Two representative datasets, Multiple Cameras Fall dataset (MCF), and Nanyang Technological University Red Green Blue + Depth Action Recognition dataset (NTU RGB + D), are selected for our experiments, among which NTU RGB + D has two evaluation benchmarks. The results show that the proposed model is superior to the current fall detection models. The accuracy of this network on the MCF dataset is 96.3%, and the accuracies on the two evaluation benchmarks of the NTU RGB + D dataset are 85.6% and 93.5%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信