具有重尾平衡的Fokker-Planck方程的分数扩散:任意维的 la Koch谱方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dahmane Dechicha, Marjolaine Puel
{"title":"具有重尾平衡的Fokker-Planck方程的分数扩散:任意维的<s:1> la Koch谱方法","authors":"Dahmane Dechicha, Marjolaine Puel","doi":"10.3233/asy-231870","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the spectral method developed (Dechicha and Puel (2023)) to any dimension d ⩾ 1, in order to construct an eigen-solution for the Fokker–Planck operator with heavy tail equilibria, of the form ( 1 + | v | 2 ) − β 2 , in the range β ∈ ] d , d + 4 [. The method developed in dimension 1 was inspired by the work of H. Koch on nonlinear KdV equation (Nonlinearity 28 (2015) 545). The strategy in this paper is the same as in dimension 1 but the tools are different, since dimension 1 was based on ODE methods. As a direct consequence of our construction, we obtain the fractional diffusion limit for the kinetic Fokker–Planck equation, for the correct density ρ : = ∫ R d f d v, with a fractional Laplacian κ ( − Δ ) β − d + 2 6 and a positive diffusion coefficient κ.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional diffusion for Fokker–Planck equation with heavy tail equilibrium: An à la Koch spectral method in any dimension\",\"authors\":\"Dahmane Dechicha, Marjolaine Puel\",\"doi\":\"10.3233/asy-231870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the spectral method developed (Dechicha and Puel (2023)) to any dimension d ⩾ 1, in order to construct an eigen-solution for the Fokker–Planck operator with heavy tail equilibria, of the form ( 1 + | v | 2 ) − β 2 , in the range β ∈ ] d , d + 4 [. The method developed in dimension 1 was inspired by the work of H. Koch on nonlinear KdV equation (Nonlinearity 28 (2015) 545). The strategy in this paper is the same as in dimension 1 but the tools are different, since dimension 1 was based on ODE methods. As a direct consequence of our construction, we obtain the fractional diffusion limit for the kinetic Fokker–Planck equation, for the correct density ρ : = ∫ R d f d v, with a fractional Laplacian κ ( − Δ ) β − d + 2 6 and a positive diffusion coefficient κ.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231870\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-231870","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将开发的频谱方法(Dechicha和Puel(2023))扩展到任何维度d大于或等于1,以便为具有重尾平衡的Fokker-Planck算子构建一个特征解,形式为(1 + | v | 2)−β 2,在β∈]d, d + 4[。在维1中开发的方法受到H. Koch关于非线性KdV方程(非线性28(2015)545)的工作的启发。本文中的策略与维度1中的相同,但工具不同,因为维度1是基于ODE方法的。作为我们构造的直接结果,我们得到了动力学Fokker-Planck方程的分数扩散极限,对于正确的密度ρ: =∫R d f d v,具有分数阶拉普拉斯算子κ(−Δ) β - d + 26和正扩散系数κ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional diffusion for Fokker–Planck equation with heavy tail equilibrium: An à la Koch spectral method in any dimension
In this paper, we extend the spectral method developed (Dechicha and Puel (2023)) to any dimension d ⩾ 1, in order to construct an eigen-solution for the Fokker–Planck operator with heavy tail equilibria, of the form ( 1 + | v | 2 ) − β 2 , in the range β ∈ ] d , d + 4 [. The method developed in dimension 1 was inspired by the work of H. Koch on nonlinear KdV equation (Nonlinearity 28 (2015) 545). The strategy in this paper is the same as in dimension 1 but the tools are different, since dimension 1 was based on ODE methods. As a direct consequence of our construction, we obtain the fractional diffusion limit for the kinetic Fokker–Planck equation, for the correct density ρ : = ∫ R d f d v, with a fractional Laplacian κ ( − Δ ) β − d + 2 6 and a positive diffusion coefficient κ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信