{"title":"基于深度学习技术的航空磁重梯度数据三维协同反演","authors":"Yanyan Hu, Xiaolong Wei, Xuqing Wu, Jiajia Sun, Yueqin Huang, Jiefu Chen","doi":"10.1190/geo2023-0225.1","DOIUrl":null,"url":null,"abstract":"Utilizing multiple geophysical methods has become a prevailing approach in numerous geophysical applications to investigate subsurface structures and parameters. These multimethod-based exploration strategies have the potential to greatly diminish uncertainties and ambiguities encountered during geophysical data analysis and interpretation. One of the applications is the cooperative inversion of airborne magnetic and gravity gradient data for the interpretation of data obtained in mineral, oil and gas, and geothermal explorations. In this paper, a unified cooperative inversion framework is designed by combining the standard separate inversions with a deep neural network (DNN), which serves as the link between different types of data. A well-trained DNN takes the separately inverted susceptibility and density models as the inputs and provides improved models that will be used as the initial models of deterministic inversions. A two-round iteration strategy is adopted to guarantee the reasonability of the recovered models and overall efficiency of the inversion. In addition, this deep learning (DL)-based framework demonstrates excellent generalization abilities when tested on models that are entirely distinct from the training data sets. The framework can easily incorporate multi-physics without necessitating any structural changes to the network. Synthetic experiments validate that our DL-based method outperforms conventional separate inversions and cross-gradient-based joint inversion in view of the accuracy of the recovered models and inversion efficiency. Successful application to field data further verifies the effectiveness of our DL-based method.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"42 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D cooperative inversion of airborne magnetic and gravity gradient data using deep learning techniques\",\"authors\":\"Yanyan Hu, Xiaolong Wei, Xuqing Wu, Jiajia Sun, Yueqin Huang, Jiefu Chen\",\"doi\":\"10.1190/geo2023-0225.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing multiple geophysical methods has become a prevailing approach in numerous geophysical applications to investigate subsurface structures and parameters. These multimethod-based exploration strategies have the potential to greatly diminish uncertainties and ambiguities encountered during geophysical data analysis and interpretation. One of the applications is the cooperative inversion of airborne magnetic and gravity gradient data for the interpretation of data obtained in mineral, oil and gas, and geothermal explorations. In this paper, a unified cooperative inversion framework is designed by combining the standard separate inversions with a deep neural network (DNN), which serves as the link between different types of data. A well-trained DNN takes the separately inverted susceptibility and density models as the inputs and provides improved models that will be used as the initial models of deterministic inversions. A two-round iteration strategy is adopted to guarantee the reasonability of the recovered models and overall efficiency of the inversion. In addition, this deep learning (DL)-based framework demonstrates excellent generalization abilities when tested on models that are entirely distinct from the training data sets. The framework can easily incorporate multi-physics without necessitating any structural changes to the network. Synthetic experiments validate that our DL-based method outperforms conventional separate inversions and cross-gradient-based joint inversion in view of the accuracy of the recovered models and inversion efficiency. Successful application to field data further verifies the effectiveness of our DL-based method.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0225.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0225.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
3D cooperative inversion of airborne magnetic and gravity gradient data using deep learning techniques
Utilizing multiple geophysical methods has become a prevailing approach in numerous geophysical applications to investigate subsurface structures and parameters. These multimethod-based exploration strategies have the potential to greatly diminish uncertainties and ambiguities encountered during geophysical data analysis and interpretation. One of the applications is the cooperative inversion of airborne magnetic and gravity gradient data for the interpretation of data obtained in mineral, oil and gas, and geothermal explorations. In this paper, a unified cooperative inversion framework is designed by combining the standard separate inversions with a deep neural network (DNN), which serves as the link between different types of data. A well-trained DNN takes the separately inverted susceptibility and density models as the inputs and provides improved models that will be used as the initial models of deterministic inversions. A two-round iteration strategy is adopted to guarantee the reasonability of the recovered models and overall efficiency of the inversion. In addition, this deep learning (DL)-based framework demonstrates excellent generalization abilities when tested on models that are entirely distinct from the training data sets. The framework can easily incorporate multi-physics without necessitating any structural changes to the network. Synthetic experiments validate that our DL-based method outperforms conventional separate inversions and cross-gradient-based joint inversion in view of the accuracy of the recovered models and inversion efficiency. Successful application to field data further verifies the effectiveness of our DL-based method.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.