双管换热器槽管传热及压降特性实验研究

Natiq Fadhil, Amer Aldabbagh, Falah Hatem
{"title":"双管换热器槽管传热及压降特性实验研究","authors":"Natiq Fadhil, Amer Aldabbagh, Falah Hatem","doi":"10.30684/etj.2023.140948.1477","DOIUrl":null,"url":null,"abstract":"Experiments are conducted to investigate the heat transfer and pressure drop characteristics of corrugated tubes and rod baffles in a shell-and-tube heat exchanger. One of the effective techniques to improve heat transfer is to use corrugated tubes. This article investigates rod baffles with varied corrugation depths and corrugated tubes for (1 start). In the heat exchanger's shell side, where a constant wall temperature was attained on the tube side, water was employed as the working fluid after being heated at the wall. Corrugation ratios (e/dh) of 0.1 and 0.13, pitch (p) of 10, 20, and 30mm, and two types (x/d) of 1.25 and 1.375 were used. The study was conducted throughout the Reynolds number turbulent range (4,000 to 24,000). The results manifested that the average Nusselt number of the corrugated tubes (pitch-10mm) for (x/d=1.25) increased by 25 and 55 percent for the corrugation depths of 0.1 and 0.13, respectively. The average Nusselt number for (x/d=1.375) is increased by 38% and 59% for the corrugation depths of 0.1 and 0.13, respectively. Nevertheless, the average friction factor of the corrugated tube with (e/dh) = 0.1 and 0.13 is higher than that of the smooth tube by 66% and 130%, respectively, and it decreases as the corrugation pitch and (x/d) are increased. When a corrugated tube and a rod baffle with a corrugated depth (e=2.1mm) and pitch (p=10mm) were used, the thermal enhancement factor was 1.9 for (x/d=1.25) and 1.97 for (x/d=1.375) at the same pumping power.","PeriodicalId":476841,"journal":{"name":"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā","volume":"55 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of the Double Pipe Heat Exchanger for Heat Transfer and Pressure Drop Characteristics of the Grooved Tube\",\"authors\":\"Natiq Fadhil, Amer Aldabbagh, Falah Hatem\",\"doi\":\"10.30684/etj.2023.140948.1477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experiments are conducted to investigate the heat transfer and pressure drop characteristics of corrugated tubes and rod baffles in a shell-and-tube heat exchanger. One of the effective techniques to improve heat transfer is to use corrugated tubes. This article investigates rod baffles with varied corrugation depths and corrugated tubes for (1 start). In the heat exchanger's shell side, where a constant wall temperature was attained on the tube side, water was employed as the working fluid after being heated at the wall. Corrugation ratios (e/dh) of 0.1 and 0.13, pitch (p) of 10, 20, and 30mm, and two types (x/d) of 1.25 and 1.375 were used. The study was conducted throughout the Reynolds number turbulent range (4,000 to 24,000). The results manifested that the average Nusselt number of the corrugated tubes (pitch-10mm) for (x/d=1.25) increased by 25 and 55 percent for the corrugation depths of 0.1 and 0.13, respectively. The average Nusselt number for (x/d=1.375) is increased by 38% and 59% for the corrugation depths of 0.1 and 0.13, respectively. Nevertheless, the average friction factor of the corrugated tube with (e/dh) = 0.1 and 0.13 is higher than that of the smooth tube by 66% and 130%, respectively, and it decreases as the corrugation pitch and (x/d) are increased. When a corrugated tube and a rod baffle with a corrugated depth (e=2.1mm) and pitch (p=10mm) were used, the thermal enhancement factor was 1.9 for (x/d=1.25) and 1.97 for (x/d=1.375) at the same pumping power.\",\"PeriodicalId\":476841,\"journal\":{\"name\":\"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā\",\"volume\":\"55 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30684/etj.2023.140948.1477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30684/etj.2023.140948.1477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对壳管式换热器中波纹管和杆折流板的换热和压降特性进行了试验研究。改善传热的有效技术之一是使用波纹管。本文研究了不同波纹深度的杆挡板和波纹管。在换热器壳侧,管侧壁面温度恒定,水在壁面受热后作为工质。波纹比(e/dh)分别为0.1和0.13,节距(p)分别为10、20和30mm,两种类型(x/d)分别为1.25和1.375。本研究在整个雷诺数湍流范围(4000 ~ 24000)内进行。结果表明,当x/d=1.25时,波纹管(节距-10mm)的平均努塞尔数分别增加了25%和55%,波纹深度分别为0.1和0.13。当波纹深度为0.1和0.13时,(x/d=1.375)的平均努塞尔数分别增加38%和59%。但(e/dh) = 0.1和0.13时波纹管的平均摩擦因数分别比光滑管高66%和130%,且随着波纹节距和(x/d)的增大而减小。采用波纹管和波纹深度(e=2.1mm)、节距(p=10mm)的杆式挡板,在相同泵浦功率下,当x/d=1.25时,其热增强系数为1.9,当x/d=1.375时,其热增强系数为1.97。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of the Double Pipe Heat Exchanger for Heat Transfer and Pressure Drop Characteristics of the Grooved Tube
Experiments are conducted to investigate the heat transfer and pressure drop characteristics of corrugated tubes and rod baffles in a shell-and-tube heat exchanger. One of the effective techniques to improve heat transfer is to use corrugated tubes. This article investigates rod baffles with varied corrugation depths and corrugated tubes for (1 start). In the heat exchanger's shell side, where a constant wall temperature was attained on the tube side, water was employed as the working fluid after being heated at the wall. Corrugation ratios (e/dh) of 0.1 and 0.13, pitch (p) of 10, 20, and 30mm, and two types (x/d) of 1.25 and 1.375 were used. The study was conducted throughout the Reynolds number turbulent range (4,000 to 24,000). The results manifested that the average Nusselt number of the corrugated tubes (pitch-10mm) for (x/d=1.25) increased by 25 and 55 percent for the corrugation depths of 0.1 and 0.13, respectively. The average Nusselt number for (x/d=1.375) is increased by 38% and 59% for the corrugation depths of 0.1 and 0.13, respectively. Nevertheless, the average friction factor of the corrugated tube with (e/dh) = 0.1 and 0.13 is higher than that of the smooth tube by 66% and 130%, respectively, and it decreases as the corrugation pitch and (x/d) are increased. When a corrugated tube and a rod baffle with a corrugated depth (e=2.1mm) and pitch (p=10mm) were used, the thermal enhancement factor was 1.9 for (x/d=1.25) and 1.97 for (x/d=1.375) at the same pumping power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信