{"title":"医疗系统中基于物联网的癌症检测预测建模技术","authors":"Ramya T, Gopinath M.P","doi":"10.2174/0118722121248136230928053214","DOIUrl":null,"url":null,"abstract":"Background: The main objective of the Internet of Things (IoT) has significantly influenced and altered technology, such as interconnection, interoperability, and sensor devices. To ensure seamless healthcare facilities, it's essential to use the benefits of ubiquitous IoT services to assist patients by monitoring vital signs and automating functions. In healthcare, the current stateof-the-art equipment cannot detect many cancers early, and almost all humans have lost their lives due to this lethal sickness. Hence, early diagnosis of cancer is a significant difficulty for medical experts and researchers. Methods: The method for identifying cancer, together with machine learning and IOT, yield reliable results. In the Proposed model FCM system, the SVM methodology is reviewed to classify either benign or malignant disease. In addition, we applied a recursive feature selection to identify characteristics from the cancer dataset to boost the classifier system's capabilities. Results: This method is being applied in conjunction with fuzzy cluster-based augmentation, and classification can employ continuous monitoring to forecast lung cancer to improve patient care. In the process of effective image segmentation, the fuzzy-clustering methodology is implemented, which is used for the goal of obtaining transition region data. Conclusion: The Otsu thresholding method is applied to help recover the transition region from a lung cancer image. Furthermore, morphological thinning on the right edge and the segmentationimproving pictures are employed to increase segmentation performance. In future work, we intend to design a prototype to ensure real-time analysis to provide enhanced results. Thus, this work may open doors to carry patent-based outcomes.","PeriodicalId":40022,"journal":{"name":"Recent Patents on Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT Based Predictive Modeling Techniques for Cancer Detection in Healthcare Systems\",\"authors\":\"Ramya T, Gopinath M.P\",\"doi\":\"10.2174/0118722121248136230928053214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The main objective of the Internet of Things (IoT) has significantly influenced and altered technology, such as interconnection, interoperability, and sensor devices. To ensure seamless healthcare facilities, it's essential to use the benefits of ubiquitous IoT services to assist patients by monitoring vital signs and automating functions. In healthcare, the current stateof-the-art equipment cannot detect many cancers early, and almost all humans have lost their lives due to this lethal sickness. Hence, early diagnosis of cancer is a significant difficulty for medical experts and researchers. Methods: The method for identifying cancer, together with machine learning and IOT, yield reliable results. In the Proposed model FCM system, the SVM methodology is reviewed to classify either benign or malignant disease. In addition, we applied a recursive feature selection to identify characteristics from the cancer dataset to boost the classifier system's capabilities. Results: This method is being applied in conjunction with fuzzy cluster-based augmentation, and classification can employ continuous monitoring to forecast lung cancer to improve patient care. In the process of effective image segmentation, the fuzzy-clustering methodology is implemented, which is used for the goal of obtaining transition region data. Conclusion: The Otsu thresholding method is applied to help recover the transition region from a lung cancer image. Furthermore, morphological thinning on the right edge and the segmentationimproving pictures are employed to increase segmentation performance. In future work, we intend to design a prototype to ensure real-time analysis to provide enhanced results. Thus, this work may open doors to carry patent-based outcomes.\",\"PeriodicalId\":40022,\"journal\":{\"name\":\"Recent Patents on Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118722121248136230928053214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118722121248136230928053214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
IoT Based Predictive Modeling Techniques for Cancer Detection in Healthcare Systems
Background: The main objective of the Internet of Things (IoT) has significantly influenced and altered technology, such as interconnection, interoperability, and sensor devices. To ensure seamless healthcare facilities, it's essential to use the benefits of ubiquitous IoT services to assist patients by monitoring vital signs and automating functions. In healthcare, the current stateof-the-art equipment cannot detect many cancers early, and almost all humans have lost their lives due to this lethal sickness. Hence, early diagnosis of cancer is a significant difficulty for medical experts and researchers. Methods: The method for identifying cancer, together with machine learning and IOT, yield reliable results. In the Proposed model FCM system, the SVM methodology is reviewed to classify either benign or malignant disease. In addition, we applied a recursive feature selection to identify characteristics from the cancer dataset to boost the classifier system's capabilities. Results: This method is being applied in conjunction with fuzzy cluster-based augmentation, and classification can employ continuous monitoring to forecast lung cancer to improve patient care. In the process of effective image segmentation, the fuzzy-clustering methodology is implemented, which is used for the goal of obtaining transition region data. Conclusion: The Otsu thresholding method is applied to help recover the transition region from a lung cancer image. Furthermore, morphological thinning on the right edge and the segmentationimproving pictures are employed to increase segmentation performance. In future work, we intend to design a prototype to ensure real-time analysis to provide enhanced results. Thus, this work may open doors to carry patent-based outcomes.
期刊介绍:
Recent Patents on Engineering publishes review articles by experts on recent patents in the major fields of engineering. A selection of important and recent patents on engineering is also included in the journal. The journal is essential reading for all researchers involved in engineering sciences.