分布阶非菲克流块中心有限差分格式的误差分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xuan Zhao, Ziyan Li
{"title":"分布阶非菲克流块中心有限差分格式的误差分析","authors":"Xuan Zhao, Ziyan Li","doi":"10.1002/num.23078","DOIUrl":null,"url":null,"abstract":"Abstract In this article, two numerical schemes are designed and analyzed for the distributed‐order non‐Fickian flow. Two different processing techniques are applied to deal with the time distributed‐order derivative for the constructed two schemes, while the classical block‐centered finite difference method is used in spatial discretization. To be precise, one adopts the standard numerical scheme called SD scheme in the temporal direction, and the other utilizes an efficient method called EF scheme. We derive the stabilities of the two schemes rigorously. The convergence result of the SD scheme for pressure and velocity is . However, to get a faster computing speed, the super parameter is needed for the EF scheme, which leads to the accuracy is . Finally, some numerical experiments are carried out to verify the theoretical analysis.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error analyses on block‐centered finite difference schemes for distributed‐order non‐Fickian flow\",\"authors\":\"Xuan Zhao, Ziyan Li\",\"doi\":\"10.1002/num.23078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, two numerical schemes are designed and analyzed for the distributed‐order non‐Fickian flow. Two different processing techniques are applied to deal with the time distributed‐order derivative for the constructed two schemes, while the classical block‐centered finite difference method is used in spatial discretization. To be precise, one adopts the standard numerical scheme called SD scheme in the temporal direction, and the other utilizes an efficient method called EF scheme. We derive the stabilities of the two schemes rigorously. The convergence result of the SD scheme for pressure and velocity is . However, to get a faster computing speed, the super parameter is needed for the EF scheme, which leads to the accuracy is . Finally, some numerical experiments are carried out to verify the theoretical analysis.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/num.23078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文设计并分析了分布阶非菲克流的两种数值格式。对于所构建的两种格式,采用了两种不同的处理技术来处理时间分布阶导数,而在空间离散化中则使用了经典的块中心有限差分方法。准确地说,一种是在时间方向上采用标准的数值格式SD格式,另一种是采用一种高效的方法EF格式。我们严格地推导了这两种方案的稳定性。压力和速度SD格式的收敛结果为。然而,为了获得更快的计算速度,EF格式需要超参数,导致精度为。最后通过数值实验验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error analyses on block‐centered finite difference schemes for distributed‐order non‐Fickian flow
Abstract In this article, two numerical schemes are designed and analyzed for the distributed‐order non‐Fickian flow. Two different processing techniques are applied to deal with the time distributed‐order derivative for the constructed two schemes, while the classical block‐centered finite difference method is used in spatial discretization. To be precise, one adopts the standard numerical scheme called SD scheme in the temporal direction, and the other utilizes an efficient method called EF scheme. We derive the stabilities of the two schemes rigorously. The convergence result of the SD scheme for pressure and velocity is . However, to get a faster computing speed, the super parameter is needed for the EF scheme, which leads to the accuracy is . Finally, some numerical experiments are carried out to verify the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信