{"title":"分布阶非菲克流块中心有限差分格式的误差分析","authors":"Xuan Zhao, Ziyan Li","doi":"10.1002/num.23078","DOIUrl":null,"url":null,"abstract":"Abstract In this article, two numerical schemes are designed and analyzed for the distributed‐order non‐Fickian flow. Two different processing techniques are applied to deal with the time distributed‐order derivative for the constructed two schemes, while the classical block‐centered finite difference method is used in spatial discretization. To be precise, one adopts the standard numerical scheme called SD scheme in the temporal direction, and the other utilizes an efficient method called EF scheme. We derive the stabilities of the two schemes rigorously. The convergence result of the SD scheme for pressure and velocity is . However, to get a faster computing speed, the super parameter is needed for the EF scheme, which leads to the accuracy is . Finally, some numerical experiments are carried out to verify the theoretical analysis.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"83 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error analyses on block‐centered finite difference schemes for distributed‐order non‐Fickian flow\",\"authors\":\"Xuan Zhao, Ziyan Li\",\"doi\":\"10.1002/num.23078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, two numerical schemes are designed and analyzed for the distributed‐order non‐Fickian flow. Two different processing techniques are applied to deal with the time distributed‐order derivative for the constructed two schemes, while the classical block‐centered finite difference method is used in spatial discretization. To be precise, one adopts the standard numerical scheme called SD scheme in the temporal direction, and the other utilizes an efficient method called EF scheme. We derive the stabilities of the two schemes rigorously. The convergence result of the SD scheme for pressure and velocity is . However, to get a faster computing speed, the super parameter is needed for the EF scheme, which leads to the accuracy is . Finally, some numerical experiments are carried out to verify the theoretical analysis.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23078\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/num.23078","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Error analyses on block‐centered finite difference schemes for distributed‐order non‐Fickian flow
Abstract In this article, two numerical schemes are designed and analyzed for the distributed‐order non‐Fickian flow. Two different processing techniques are applied to deal with the time distributed‐order derivative for the constructed two schemes, while the classical block‐centered finite difference method is used in spatial discretization. To be precise, one adopts the standard numerical scheme called SD scheme in the temporal direction, and the other utilizes an efficient method called EF scheme. We derive the stabilities of the two schemes rigorously. The convergence result of the SD scheme for pressure and velocity is . However, to get a faster computing speed, the super parameter is needed for the EF scheme, which leads to the accuracy is . Finally, some numerical experiments are carried out to verify the theoretical analysis.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.