{"title":"基于自组装导电聚合物的过氧化氢(H2O2)生物传感器","authors":"Siti Amira Othman, Shahidan Radiman","doi":"10.30880/ijie.2023.15.03.025","DOIUrl":null,"url":null,"abstract":"Biosensors are in principle fabricated by immobilized biomaterials on a detector membrane and combining them with electrochemical equipment. The applications of enzyme-based biosensors can be explored such as in the process of gas detection, medicine, pathogen detection and detection of toxic levels of substances before and after bioremediation. In this study, H2O2 detection was performed using HRP/PANI, HRP/PPY, HRP/PT and HRP/PT/PPY/PANI layers. The HRP/PANI layer from Variable Pressure Scanning Electron Microscopy (VPSEM) image exhibited a dry surface. The HRP/PPY layer exhibited a surface with agglomerate molecules. The HRP/PT layer, on the hand, exhibited a layer surface with almost the same molecular size. This is confirmed by the higher surface roughness value for HRP/PPY compared to other layers obtained via characterization with Atomic Force Microscopy (AFM). The increasing current response for all three layers was arranged in HRP/PANI> HRP/PT> HRP/PPY. VPSEM and AFM images exhibited surfaces with molecules being in an agglomeration state after the H2O2 detection process. In terms of current response, the response rate of H2O2on the surface of the HRP/PT/PPY/PANI electrode caused the current response obtained to be fast. The roughness value increased with time due to the reaction that took place between the surface of the HRP/PT/PPY/PANI layer with H2O2. The day-based current response showed that day 1 to day 14 exhibited a uniform graph pattern but from day 21 to day 30 there was a change in the graph pattern due to the HRP/PT/PPY/PANI layer undergoing degradation. The activity of the HRP enzyme was studied by looking at its absorption effect for 30 days. From day 1 to day 14, there was a difference in the overall rate of absorption. However, from day 21 to day 30, the rate of absorption remained constant which explains the slowing down of HRP activity.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Peroxide (H2O2) Biosensor Based on the Conducting Polymer Using Self-Assembly Technique\",\"authors\":\"Siti Amira Othman, Shahidan Radiman\",\"doi\":\"10.30880/ijie.2023.15.03.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biosensors are in principle fabricated by immobilized biomaterials on a detector membrane and combining them with electrochemical equipment. The applications of enzyme-based biosensors can be explored such as in the process of gas detection, medicine, pathogen detection and detection of toxic levels of substances before and after bioremediation. In this study, H2O2 detection was performed using HRP/PANI, HRP/PPY, HRP/PT and HRP/PT/PPY/PANI layers. The HRP/PANI layer from Variable Pressure Scanning Electron Microscopy (VPSEM) image exhibited a dry surface. The HRP/PPY layer exhibited a surface with agglomerate molecules. The HRP/PT layer, on the hand, exhibited a layer surface with almost the same molecular size. This is confirmed by the higher surface roughness value for HRP/PPY compared to other layers obtained via characterization with Atomic Force Microscopy (AFM). The increasing current response for all three layers was arranged in HRP/PANI> HRP/PT> HRP/PPY. VPSEM and AFM images exhibited surfaces with molecules being in an agglomeration state after the H2O2 detection process. In terms of current response, the response rate of H2O2on the surface of the HRP/PT/PPY/PANI electrode caused the current response obtained to be fast. The roughness value increased with time due to the reaction that took place between the surface of the HRP/PT/PPY/PANI layer with H2O2. The day-based current response showed that day 1 to day 14 exhibited a uniform graph pattern but from day 21 to day 30 there was a change in the graph pattern due to the HRP/PT/PPY/PANI layer undergoing degradation. The activity of the HRP enzyme was studied by looking at its absorption effect for 30 days. From day 1 to day 14, there was a difference in the overall rate of absorption. However, from day 21 to day 30, the rate of absorption remained constant which explains the slowing down of HRP activity.\",\"PeriodicalId\":14189,\"journal\":{\"name\":\"International Journal of Integrated Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/ijie.2023.15.03.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.03.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrogen Peroxide (H2O2) Biosensor Based on the Conducting Polymer Using Self-Assembly Technique
Biosensors are in principle fabricated by immobilized biomaterials on a detector membrane and combining them with electrochemical equipment. The applications of enzyme-based biosensors can be explored such as in the process of gas detection, medicine, pathogen detection and detection of toxic levels of substances before and after bioremediation. In this study, H2O2 detection was performed using HRP/PANI, HRP/PPY, HRP/PT and HRP/PT/PPY/PANI layers. The HRP/PANI layer from Variable Pressure Scanning Electron Microscopy (VPSEM) image exhibited a dry surface. The HRP/PPY layer exhibited a surface with agglomerate molecules. The HRP/PT layer, on the hand, exhibited a layer surface with almost the same molecular size. This is confirmed by the higher surface roughness value for HRP/PPY compared to other layers obtained via characterization with Atomic Force Microscopy (AFM). The increasing current response for all three layers was arranged in HRP/PANI> HRP/PT> HRP/PPY. VPSEM and AFM images exhibited surfaces with molecules being in an agglomeration state after the H2O2 detection process. In terms of current response, the response rate of H2O2on the surface of the HRP/PT/PPY/PANI electrode caused the current response obtained to be fast. The roughness value increased with time due to the reaction that took place between the surface of the HRP/PT/PPY/PANI layer with H2O2. The day-based current response showed that day 1 to day 14 exhibited a uniform graph pattern but from day 21 to day 30 there was a change in the graph pattern due to the HRP/PT/PPY/PANI layer undergoing degradation. The activity of the HRP enzyme was studied by looking at its absorption effect for 30 days. From day 1 to day 14, there was a difference in the overall rate of absorption. However, from day 21 to day 30, the rate of absorption remained constant which explains the slowing down of HRP activity.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.