下行链路大规模MIMO系统:在完全了解大规模衰落的情况下减少信道估计中的导频污染

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Qazwan Abdullah, Nor Shahida Mohd Shah, Adeb Salh, Akram A. Almohammedi, Shipun Hamza Anuar, Bin Saeed A. B.
{"title":"下行链路大规模MIMO系统:在完全了解大规模衰落的情况下减少信道估计中的导频污染","authors":"Qazwan Abdullah, Nor Shahida Mohd Shah, Adeb Salh, Akram A. Almohammedi, Shipun Hamza Anuar, Bin Saeed A. B.","doi":"10.30880/ijie.2023.15.03.024","DOIUrl":null,"url":null,"abstract":"Massive multiple-input multiple-output (MIMO) technology is considered crucial for the development of future fifth-generation (5G) systems. However, a limitation of massive MIMO systems arises from the lack of orthogonality in the pilot sequences transmitted by users from a single cell to neighboring cells. To address this constraint, a proposed solution involves utilizing orthogonal pilot reuse sequences (PRS) and zero forced (ZF) pre-coding techniques. The primary objective of these techniques is to eradicate channel interference and improve the experience of end users who are afflicted by low-quality channels. The assessment of the channel involves evaluating its quality through channel assessment, conducting comprehensive evaluations of large-scale shutdowns, and analyzing the maximum transmission efficiency. By assigning PRS to a group of users, the proposed approach establishes lower bounds for the achievable downlink data rate (DR) and signal-to-interference noise ratio (SINR). These bounds are derived by considering the number of antennas approaches infinity which helps mitigate interference. Simulation results demonstrate that the utilization of improved channel evaluation and reduced loss leads to higher DR. When comparing different precoding techniques, the ZF method outperforms maximum ratio transmission (MRT) precoders in achieving a higher DR, particularly when the number of cells reaches 𝛶𝛶𝑝𝑝=7.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"56 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downlink Massive MIMO Systems: Reduction of Pilot Contamination for Channel Estimation with Perfect Knowledge of Large-Scale Fading\",\"authors\":\"Qazwan Abdullah, Nor Shahida Mohd Shah, Adeb Salh, Akram A. Almohammedi, Shipun Hamza Anuar, Bin Saeed A. B.\",\"doi\":\"10.30880/ijie.2023.15.03.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive multiple-input multiple-output (MIMO) technology is considered crucial for the development of future fifth-generation (5G) systems. However, a limitation of massive MIMO systems arises from the lack of orthogonality in the pilot sequences transmitted by users from a single cell to neighboring cells. To address this constraint, a proposed solution involves utilizing orthogonal pilot reuse sequences (PRS) and zero forced (ZF) pre-coding techniques. The primary objective of these techniques is to eradicate channel interference and improve the experience of end users who are afflicted by low-quality channels. The assessment of the channel involves evaluating its quality through channel assessment, conducting comprehensive evaluations of large-scale shutdowns, and analyzing the maximum transmission efficiency. By assigning PRS to a group of users, the proposed approach establishes lower bounds for the achievable downlink data rate (DR) and signal-to-interference noise ratio (SINR). These bounds are derived by considering the number of antennas approaches infinity which helps mitigate interference. Simulation results demonstrate that the utilization of improved channel evaluation and reduced loss leads to higher DR. When comparing different precoding techniques, the ZF method outperforms maximum ratio transmission (MRT) precoders in achieving a higher DR, particularly when the number of cells reaches 𝛶𝛶𝑝𝑝=7.\",\"PeriodicalId\":14189,\"journal\":{\"name\":\"International Journal of Integrated Engineering\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/ijie.2023.15.03.024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.03.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大规模多输入多输出(MIMO)技术被认为是未来第五代(5G)系统发展的关键。然而,大规模MIMO系统的局限性在于用户从单个小区传输到相邻小区的导频序列缺乏正交性。为了解决这个问题,提出了一种利用正交导频复用序列(PRS)和零强制(ZF)预编码技术的解决方案。这些技术的主要目标是消除信道干扰,改善受低质量信道困扰的终端用户的体验。通道的评估包括通过通道评估来评估其质量,对大规模停运进行综合评估,分析最大传输效率。通过将PRS分配给一组用户,该方法建立了可实现的下行数据速率(DR)和信噪比(SINR)的下界。这些边界是通过考虑天线的数量趋于无穷大而得到的,这有助于减轻干扰。仿真结果表明,利用改进的信道评估和减少的损耗可以获得更高的DR。当比较不同的预编码技术时,ZF方法在实现更高的DR方面优于最大比率传输(MRT)预编码,特别是当单元数达到𝛶𝛶𝑝𝑝=7时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Downlink Massive MIMO Systems: Reduction of Pilot Contamination for Channel Estimation with Perfect Knowledge of Large-Scale Fading
Massive multiple-input multiple-output (MIMO) technology is considered crucial for the development of future fifth-generation (5G) systems. However, a limitation of massive MIMO systems arises from the lack of orthogonality in the pilot sequences transmitted by users from a single cell to neighboring cells. To address this constraint, a proposed solution involves utilizing orthogonal pilot reuse sequences (PRS) and zero forced (ZF) pre-coding techniques. The primary objective of these techniques is to eradicate channel interference and improve the experience of end users who are afflicted by low-quality channels. The assessment of the channel involves evaluating its quality through channel assessment, conducting comprehensive evaluations of large-scale shutdowns, and analyzing the maximum transmission efficiency. By assigning PRS to a group of users, the proposed approach establishes lower bounds for the achievable downlink data rate (DR) and signal-to-interference noise ratio (SINR). These bounds are derived by considering the number of antennas approaches infinity which helps mitigate interference. Simulation results demonstrate that the utilization of improved channel evaluation and reduced loss leads to higher DR. When comparing different precoding techniques, the ZF method outperforms maximum ratio transmission (MRT) precoders in achieving a higher DR, particularly when the number of cells reaches 𝛶𝛶𝑝𝑝=7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Integrated Engineering
International Journal of Integrated Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
0.00%
发文量
57
期刊介绍: The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信