通过LC-MS/MS和分子对接分析鉴定Mas Cotek (Ficus deltoidea)治疗2型糖尿病的拟胰岛素植物化学物质

Eng Shu Man, Mohd Ezuan Khayat
{"title":"通过LC-MS/MS和分子对接分析鉴定Mas Cotek (Ficus deltoidea)治疗2型糖尿病的拟胰岛素植物化学物质","authors":"Eng Shu Man, Mohd Ezuan Khayat","doi":"10.54987/jobimb.v11i1.818","DOIUrl":null,"url":null,"abstract":"Type 2 diabetes mellitus, a metabolic syndrome, has become increasingly prevalent in recent years. In the treatment of chronic T2DM, patients are required to take insulin daily, commonly through injections, as the hormone can easily be degraded by the digestive system if taken orally. This can be an uncomfortable experience for the patient. Thus, finding an alternative to insulin, especially from natural compounds, would be beneficial. Ficus deltoidea, which belongs to the Moraceae family, is a medicinal plant known for its anti-diabetic properties. Therefore, this study aimed to identify the phytochemicals from F. deltoidea that mimic insulin by studying their ability to bind to insulin receptors using in silico analysis. A total of 36 phytochemicals were identified in the methanolic extract of F. deltoidea through LC-MS/MS analysis. They were then subjected to molecular docking to determine their binding free energy with the insulin receptor (IR). The results revealed seven phytochemicals with the lowest binding free energy, with 2,3-dihydroxy-N,N'-bis[(E)-1-(4-hydroxy-6-methyl-2-oxochromen-3-yl)ethylideneamino] butanediamide exhibiting the lowest binding free energy at -10.0 kcal/mol. Hence, these phytochemicals demonstrate potential as insulin-mimetic compounds that can be used in the treatment of T2DM.","PeriodicalId":15132,"journal":{"name":"Journal of Biochemistry, Microbiology and Biotechnology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Insulin-Mimetic Phytochemicals from Mas Cotek (Ficus deltoidea) for Treatment of Type 2 Diabetes via LC-MS/MS and Molecular Docking Analyses\",\"authors\":\"Eng Shu Man, Mohd Ezuan Khayat\",\"doi\":\"10.54987/jobimb.v11i1.818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type 2 diabetes mellitus, a metabolic syndrome, has become increasingly prevalent in recent years. In the treatment of chronic T2DM, patients are required to take insulin daily, commonly through injections, as the hormone can easily be degraded by the digestive system if taken orally. This can be an uncomfortable experience for the patient. Thus, finding an alternative to insulin, especially from natural compounds, would be beneficial. Ficus deltoidea, which belongs to the Moraceae family, is a medicinal plant known for its anti-diabetic properties. Therefore, this study aimed to identify the phytochemicals from F. deltoidea that mimic insulin by studying their ability to bind to insulin receptors using in silico analysis. A total of 36 phytochemicals were identified in the methanolic extract of F. deltoidea through LC-MS/MS analysis. They were then subjected to molecular docking to determine their binding free energy with the insulin receptor (IR). The results revealed seven phytochemicals with the lowest binding free energy, with 2,3-dihydroxy-N,N'-bis[(E)-1-(4-hydroxy-6-methyl-2-oxochromen-3-yl)ethylideneamino] butanediamide exhibiting the lowest binding free energy at -10.0 kcal/mol. Hence, these phytochemicals demonstrate potential as insulin-mimetic compounds that can be used in the treatment of T2DM.\",\"PeriodicalId\":15132,\"journal\":{\"name\":\"Journal of Biochemistry, Microbiology and Biotechnology\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemistry, Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54987/jobimb.v11i1.818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemistry, Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54987/jobimb.v11i1.818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2型糖尿病是一种代谢综合征,近年来越来越普遍。在慢性2型糖尿病的治疗中,患者需要每天注射胰岛素,因为口服胰岛素很容易被消化系统降解。这对病人来说可能是一种不舒服的经历。因此,寻找胰岛素的替代品,特别是从天然化合物中寻找,将是有益的。榕属桑科植物,是一种以抗糖尿病特性而闻名的药用植物。因此,本研究旨在通过硅分析研究F. deltoidea中与胰岛素受体结合的能力来鉴定其模拟胰岛素的植物化学物质。通过LC-MS/MS分析,共鉴定出36种植物化学物质。然后对它们进行分子对接,以确定它们与胰岛素受体(IR)的结合自由能。结果表明,7种植物化学物质的结合自由能最低,其中2,3-二羟基-N,N'-双[(E)-1-(4-羟基-6-甲基-2-氧铬-3-基)乙基氨基]丁二胺的结合自由能最低,为-10.0 kcal/mol。因此,这些植物化学物质具有作为胰岛素模拟化合物的潜力,可用于治疗2型糖尿病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Insulin-Mimetic Phytochemicals from Mas Cotek (Ficus deltoidea) for Treatment of Type 2 Diabetes via LC-MS/MS and Molecular Docking Analyses
Type 2 diabetes mellitus, a metabolic syndrome, has become increasingly prevalent in recent years. In the treatment of chronic T2DM, patients are required to take insulin daily, commonly through injections, as the hormone can easily be degraded by the digestive system if taken orally. This can be an uncomfortable experience for the patient. Thus, finding an alternative to insulin, especially from natural compounds, would be beneficial. Ficus deltoidea, which belongs to the Moraceae family, is a medicinal plant known for its anti-diabetic properties. Therefore, this study aimed to identify the phytochemicals from F. deltoidea that mimic insulin by studying their ability to bind to insulin receptors using in silico analysis. A total of 36 phytochemicals were identified in the methanolic extract of F. deltoidea through LC-MS/MS analysis. They were then subjected to molecular docking to determine their binding free energy with the insulin receptor (IR). The results revealed seven phytochemicals with the lowest binding free energy, with 2,3-dihydroxy-N,N'-bis[(E)-1-(4-hydroxy-6-methyl-2-oxochromen-3-yl)ethylideneamino] butanediamide exhibiting the lowest binding free energy at -10.0 kcal/mol. Hence, these phytochemicals demonstrate potential as insulin-mimetic compounds that can be used in the treatment of T2DM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信