苏拉威西中部Bora非火山地热地质构造大地电磁及重力资料优化研究

Tiaraningtias Bagus Pertiwi, Yunus Daud, Fikri Fahmi
{"title":"苏拉威西中部Bora非火山地热地质构造大地电磁及重力资料优化研究","authors":"Tiaraningtias Bagus Pertiwi, Yunus Daud, Fikri Fahmi","doi":"10.25299/jgeet.2023.8.02-2.13876","DOIUrl":null,"url":null,"abstract":"The existence of geological structures is one of the important parameters in determining the permeability zone in a geothermal system. This research was conducted in a non-volcanic geothermal field, Bora, located in the province of Central Sulawesi, aiming to identify the subsurface features, especially geological structures related to permeability zones by optimizing geophysical data. Magnetotelluric (MT) 3D inversion modelling is some of the latest methods to identify geological structural patterns in geothermal systems. The results of the MT model and analysis its parameters can find variations in the distribution of subsurface resistivity, orientation of the direction of the prospect area, and indications of geological structure zones. The type and geometry of the geological structure associated with the high permeability zone can be complemented by determining the contrast of gravity values ​​and analysis of the maximum First Horizontal Derivative (FHD) and zero of the Second Vertical Derivative (SVD). Based on the analysis of geophysical data, it is possible to identify the permeability zone associated with the main structure, namely the Palu-Koro fault, delineate the geothermal reservoir at a depth of 1500-2000 meters and determine the location of well drilling. To visualize the geothermal system comprehensively, a conceptual model is developed by integrating the geophysical model with geological and geochemical data that are correlated with each other, therefore it can assist in determining the location of production well development.","PeriodicalId":31931,"journal":{"name":"JGEET Journal of Geoscience Engineering Environment and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Geological Structure Using Magnetotelluric and Gravity Data Optimization on Non Volcanic Geothermal, Bora, Centre of Sulawesi\",\"authors\":\"Tiaraningtias Bagus Pertiwi, Yunus Daud, Fikri Fahmi\",\"doi\":\"10.25299/jgeet.2023.8.02-2.13876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of geological structures is one of the important parameters in determining the permeability zone in a geothermal system. This research was conducted in a non-volcanic geothermal field, Bora, located in the province of Central Sulawesi, aiming to identify the subsurface features, especially geological structures related to permeability zones by optimizing geophysical data. Magnetotelluric (MT) 3D inversion modelling is some of the latest methods to identify geological structural patterns in geothermal systems. The results of the MT model and analysis its parameters can find variations in the distribution of subsurface resistivity, orientation of the direction of the prospect area, and indications of geological structure zones. The type and geometry of the geological structure associated with the high permeability zone can be complemented by determining the contrast of gravity values ​​and analysis of the maximum First Horizontal Derivative (FHD) and zero of the Second Vertical Derivative (SVD). Based on the analysis of geophysical data, it is possible to identify the permeability zone associated with the main structure, namely the Palu-Koro fault, delineate the geothermal reservoir at a depth of 1500-2000 meters and determine the location of well drilling. To visualize the geothermal system comprehensively, a conceptual model is developed by integrating the geophysical model with geological and geochemical data that are correlated with each other, therefore it can assist in determining the location of production well development.\",\"PeriodicalId\":31931,\"journal\":{\"name\":\"JGEET Journal of Geoscience Engineering Environment and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JGEET Journal of Geoscience Engineering Environment and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25299/jgeet.2023.8.02-2.13876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JGEET Journal of Geoscience Engineering Environment and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25299/jgeet.2023.8.02-2.13876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地质构造是否存在是确定地热系统渗透带的重要参数之一。本研究在位于中苏拉威西省的Bora非火山地热田进行,旨在通过优化地球物理数据识别地下特征,特别是与渗透带相关的地质构造。大地电磁三维反演建模是地热系统地质构造模式识别的最新方法之一。通过对大地电磁法模型及其参数的分析,可以发现该区地下电阻率分布的变化、找矿区方向的定向以及地质构造带的指示。通过确定重力值的对比和分析第一水平导数(FHD)最大值和第二垂直导数(SVD)的零点,可以补充与高渗透带相关的地质构造的类型和几何形状。通过对地球物理资料的分析,确定了与主构造Palu-Koro断裂相关的渗透带,圈定了1500 ~ 2000米深度的地热储层,确定了钻井位置。为了全面可视化地热系统,将地球物理模型与相互关联的地质和地球化学数据相结合,建立了一个概念模型,从而有助于确定生产井开发的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Geological Structure Using Magnetotelluric and Gravity Data Optimization on Non Volcanic Geothermal, Bora, Centre of Sulawesi
The existence of geological structures is one of the important parameters in determining the permeability zone in a geothermal system. This research was conducted in a non-volcanic geothermal field, Bora, located in the province of Central Sulawesi, aiming to identify the subsurface features, especially geological structures related to permeability zones by optimizing geophysical data. Magnetotelluric (MT) 3D inversion modelling is some of the latest methods to identify geological structural patterns in geothermal systems. The results of the MT model and analysis its parameters can find variations in the distribution of subsurface resistivity, orientation of the direction of the prospect area, and indications of geological structure zones. The type and geometry of the geological structure associated with the high permeability zone can be complemented by determining the contrast of gravity values ​​and analysis of the maximum First Horizontal Derivative (FHD) and zero of the Second Vertical Derivative (SVD). Based on the analysis of geophysical data, it is possible to identify the permeability zone associated with the main structure, namely the Palu-Koro fault, delineate the geothermal reservoir at a depth of 1500-2000 meters and determine the location of well drilling. To visualize the geothermal system comprehensively, a conceptual model is developed by integrating the geophysical model with geological and geochemical data that are correlated with each other, therefore it can assist in determining the location of production well development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信