来自农村中小企业的AMAZON WEB SERVICE应用程序带宽预测的监督算法

RAMIRO OSORIO DIAZ, MARTHA YANETH SEGURA RUIZ, MAURICIO A LONSO VILLALBA
{"title":"来自农村中小企业的AMAZON WEB SERVICE应用程序带宽预测的监督算法","authors":"RAMIRO OSORIO DIAZ, MARTHA YANETH SEGURA RUIZ, MAURICIO A LONSO VILLALBA","doi":"10.21017/rimci.2023.v10.n20.a138","DOIUrl":null,"url":null,"abstract":"This article presents a methodology to measure the bandwidth behaviour by making predictions of the network traffic that connects to the cloud in small and medium enterprises in rural areas with difficult access in Colombia, in order to optimize network resources over time and ensure the quality of service in web applications. A comparative study of three neural network algorithms that model a multilayer neural network is performed, selecting the one that has a minimum error that approaches zero; the selected algorithm is trained from a data source to predict the network traffic that connects to the cloud.It is necessary to analyse network behaviour to ensure the quality of web applications in the cloud that transmit information such as data, images, sound, video, etc., some in real time, and that generate large volumes of traffic. Understanding the traffic flowing through the network enables network capacity planning when managing limited resources, such as in the case of small and medium-sized enterprises in rural areas. As a product of the research analysis, a free software prototype will be developed to perform the measurements and predictions in rural areas. The results of the implementation show that the proposed approach is superior to other forecasting methods in terms of accuracy and predictability.","PeriodicalId":267527,"journal":{"name":"Revista Ingeniería, Matemáticas y Ciencias de la Información","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALGORITMOS SUPERVISADOS PARA LA PREDICCIÓN DEL ANCHO DE BANDA DE LAS APLICACIONES EN AMAZON WEB SERVICE DESDE UNA PYME RURAL\",\"authors\":\"RAMIRO OSORIO DIAZ, MARTHA YANETH SEGURA RUIZ, MAURICIO A LONSO VILLALBA\",\"doi\":\"10.21017/rimci.2023.v10.n20.a138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a methodology to measure the bandwidth behaviour by making predictions of the network traffic that connects to the cloud in small and medium enterprises in rural areas with difficult access in Colombia, in order to optimize network resources over time and ensure the quality of service in web applications. A comparative study of three neural network algorithms that model a multilayer neural network is performed, selecting the one that has a minimum error that approaches zero; the selected algorithm is trained from a data source to predict the network traffic that connects to the cloud.It is necessary to analyse network behaviour to ensure the quality of web applications in the cloud that transmit information such as data, images, sound, video, etc., some in real time, and that generate large volumes of traffic. Understanding the traffic flowing through the network enables network capacity planning when managing limited resources, such as in the case of small and medium-sized enterprises in rural areas. As a product of the research analysis, a free software prototype will be developed to perform the measurements and predictions in rural areas. The results of the implementation show that the proposed approach is superior to other forecasting methods in terms of accuracy and predictability.\",\"PeriodicalId\":267527,\"journal\":{\"name\":\"Revista Ingeniería, Matemáticas y Ciencias de la Información\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingeniería, Matemáticas y Ciencias de la Información\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21017/rimci.2023.v10.n20.a138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingeniería, Matemáticas y Ciencias de la Información","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21017/rimci.2023.v10.n20.a138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种测量带宽行为的方法,通过对哥伦比亚农村地区难以访问的中小型企业连接到云的网络流量进行预测,以便随着时间的推移优化网络资源并确保web应用程序的服务质量。对三种神经网络算法进行了比较研究,选择了误差最小且接近于零的神经网络算法;所选算法从数据源中进行训练,以预测连接到云的网络流量。有必要对网络行为进行分析,以确保云中的web应用程序的质量,这些应用程序传输数据、图像、声音、视频等信息,有些是实时的,并且产生大量流量。了解网络中流量的流向,可以在资源有限的情况下进行网络容量规划,如农村中小企业。作为研究分析的成果,将开发一个免费的软件原型,用于在农村地区进行测量和预测。实施结果表明,该方法在精度和可预测性方面优于其他预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ALGORITMOS SUPERVISADOS PARA LA PREDICCIÓN DEL ANCHO DE BANDA DE LAS APLICACIONES EN AMAZON WEB SERVICE DESDE UNA PYME RURAL
This article presents a methodology to measure the bandwidth behaviour by making predictions of the network traffic that connects to the cloud in small and medium enterprises in rural areas with difficult access in Colombia, in order to optimize network resources over time and ensure the quality of service in web applications. A comparative study of three neural network algorithms that model a multilayer neural network is performed, selecting the one that has a minimum error that approaches zero; the selected algorithm is trained from a data source to predict the network traffic that connects to the cloud.It is necessary to analyse network behaviour to ensure the quality of web applications in the cloud that transmit information such as data, images, sound, video, etc., some in real time, and that generate large volumes of traffic. Understanding the traffic flowing through the network enables network capacity planning when managing limited resources, such as in the case of small and medium-sized enterprises in rural areas. As a product of the research analysis, a free software prototype will be developed to perform the measurements and predictions in rural areas. The results of the implementation show that the proposed approach is superior to other forecasting methods in terms of accuracy and predictability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信