自动细胞计数与YOLOv5:一种荧光显微镜方法

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sebastián López Flórez, Alfonso González-Briones, Guillermo Hernández, Carlos Ramos, Fernando de la Prieta
{"title":"自动细胞计数与YOLOv5:一种荧光显微镜方法","authors":"Sebastián López Flórez, Alfonso González-Briones, Guillermo Hernández, Carlos Ramos, Fernando de la Prieta","doi":"10.9781/ijimai.2023.08.001","DOIUrl":null,"url":null,"abstract":"Counting cells in a Neubauer chamber on microbiological culture plates is a laborious task that depends on technical experience. As a result, efforts have been made to advance computer vision-based approaches, increasing efficiency and reliability through quantitative analysis of microorganisms and calculation of their characteristics, biomass concentration, and biological activity. However, variability that still persists in these processes poses a challenge that is yet to be overcome. In this work, we propose a solution adopting a YOLOv5 network model for automatic cell recognition and counting in a case study for laboratory cell detection using images from a CytoSMART Exact FL microscope. In this context, a dataset of 21 expert-labeled cell images was created, along with an extra Sperm DetectionV dataset of 1024 images for transfer learning. The dataset was trained using the pre-trained YOLOv5 algorithm with the Sperm DetectionV database. A laboratory test was also performed to confirm result’s viability. Compared to YOLOv4, the current YOLOv5 model had accuracy, precision, recall, and F1 scores of 92%, 84%, 91%, and 87%, respectively. The YOLOv5 algorithm was also used for cell counting and compared to the current segmentation-based U-Net and OpenCV model that has been implemented. In conclusion, the proposed model successfully recognizes and counts the different types of cells present in the laboratory.","PeriodicalId":48602,"journal":{"name":"International Journal of Interactive Multimedia and Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Cell Counting With YOLOv5: A Fluorescence Microscopy Approach\",\"authors\":\"Sebastián López Flórez, Alfonso González-Briones, Guillermo Hernández, Carlos Ramos, Fernando de la Prieta\",\"doi\":\"10.9781/ijimai.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counting cells in a Neubauer chamber on microbiological culture plates is a laborious task that depends on technical experience. As a result, efforts have been made to advance computer vision-based approaches, increasing efficiency and reliability through quantitative analysis of microorganisms and calculation of their characteristics, biomass concentration, and biological activity. However, variability that still persists in these processes poses a challenge that is yet to be overcome. In this work, we propose a solution adopting a YOLOv5 network model for automatic cell recognition and counting in a case study for laboratory cell detection using images from a CytoSMART Exact FL microscope. In this context, a dataset of 21 expert-labeled cell images was created, along with an extra Sperm DetectionV dataset of 1024 images for transfer learning. The dataset was trained using the pre-trained YOLOv5 algorithm with the Sperm DetectionV database. A laboratory test was also performed to confirm result’s viability. Compared to YOLOv4, the current YOLOv5 model had accuracy, precision, recall, and F1 scores of 92%, 84%, 91%, and 87%, respectively. The YOLOv5 algorithm was also used for cell counting and compared to the current segmentation-based U-Net and OpenCV model that has been implemented. In conclusion, the proposed model successfully recognizes and counts the different types of cells present in the laboratory.\",\"PeriodicalId\":48602,\"journal\":{\"name\":\"International Journal of Interactive Multimedia and Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Interactive Multimedia and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9781/ijimai.2023.08.001\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Multimedia and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9781/ijimai.2023.08.001","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Cell Counting With YOLOv5: A Fluorescence Microscopy Approach
Counting cells in a Neubauer chamber on microbiological culture plates is a laborious task that depends on technical experience. As a result, efforts have been made to advance computer vision-based approaches, increasing efficiency and reliability through quantitative analysis of microorganisms and calculation of their characteristics, biomass concentration, and biological activity. However, variability that still persists in these processes poses a challenge that is yet to be overcome. In this work, we propose a solution adopting a YOLOv5 network model for automatic cell recognition and counting in a case study for laboratory cell detection using images from a CytoSMART Exact FL microscope. In this context, a dataset of 21 expert-labeled cell images was created, along with an extra Sperm DetectionV dataset of 1024 images for transfer learning. The dataset was trained using the pre-trained YOLOv5 algorithm with the Sperm DetectionV database. A laboratory test was also performed to confirm result’s viability. Compared to YOLOv4, the current YOLOv5 model had accuracy, precision, recall, and F1 scores of 92%, 84%, 91%, and 87%, respectively. The YOLOv5 algorithm was also used for cell counting and compared to the current segmentation-based U-Net and OpenCV model that has been implemented. In conclusion, the proposed model successfully recognizes and counts the different types of cells present in the laboratory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
11.10%
发文量
47
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信