用生物生长包在R中模拟种群增长

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Alberto Garre, Jeroen Koomen, Heidy M. W. den Besten, Marcel H. Zwietering
{"title":"用生物生长包在R中模拟种群增长","authors":"Alberto Garre, Jeroen Koomen, Heidy M. W. den Besten, Marcel H. Zwietering","doi":"10.18637/jss.v107.i01","DOIUrl":null,"url":null,"abstract":"The growth of populations is of interest in a broad variety of fields, such as epidemiology, economics or biology. Although a large variety of growth models are available in the scientific literature, their application usually requires advanced knowledge of mathematical programming and statistical inference, especially when modelling growth under dynamic environmental conditions. This article presents the biogrowth package for R, which implements functions for modelling the growth of populations. It can predict growth under static or dynamic environments, considering the effect of an arbitrary number of environmental factors. Moreover, it can be used to fit growth models to data gathered under static or dynamic environmental conditions. The package allows the user to fix any model parameter prior to the fit, an approach that can mitigate identifiability issues associated to growth models. The package includes common S3 methods for visualization and statistical analysis (summary of the fit, predictions, . . . ), easing result interpretation. It also includes functions for model comparison/selection. We illustrate the functions in biogrowth using examples from food science and economy.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"81 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling Population Growth in <i>R</i> with the <b>biogrowth</b> Package\",\"authors\":\"Alberto Garre, Jeroen Koomen, Heidy M. W. den Besten, Marcel H. Zwietering\",\"doi\":\"10.18637/jss.v107.i01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of populations is of interest in a broad variety of fields, such as epidemiology, economics or biology. Although a large variety of growth models are available in the scientific literature, their application usually requires advanced knowledge of mathematical programming and statistical inference, especially when modelling growth under dynamic environmental conditions. This article presents the biogrowth package for R, which implements functions for modelling the growth of populations. It can predict growth under static or dynamic environments, considering the effect of an arbitrary number of environmental factors. Moreover, it can be used to fit growth models to data gathered under static or dynamic environmental conditions. The package allows the user to fix any model parameter prior to the fit, an approach that can mitigate identifiability issues associated to growth models. The package includes common S3 methods for visualization and statistical analysis (summary of the fit, predictions, . . . ), easing result interpretation. It also includes functions for model comparison/selection. We illustrate the functions in biogrowth using examples from food science and economy.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v107.i01\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/jss.v107.i01","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Population Growth in R with the biogrowth Package
The growth of populations is of interest in a broad variety of fields, such as epidemiology, economics or biology. Although a large variety of growth models are available in the scientific literature, their application usually requires advanced knowledge of mathematical programming and statistical inference, especially when modelling growth under dynamic environmental conditions. This article presents the biogrowth package for R, which implements functions for modelling the growth of populations. It can predict growth under static or dynamic environments, considering the effect of an arbitrary number of environmental factors. Moreover, it can be used to fit growth models to data gathered under static or dynamic environmental conditions. The package allows the user to fix any model parameter prior to the fit, an approach that can mitigate identifiability issues associated to growth models. The package includes common S3 methods for visualization and statistical analysis (summary of the fit, predictions, . . . ), easing result interpretation. It also includes functions for model comparison/selection. We illustrate the functions in biogrowth using examples from food science and economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信