{"title":"粒径分布对掺补胶凝材料水泥微观结构和氯离子渗透性的影响","authors":"Ge Gao, Qiang Li, Hongjie Luo, Xiao Huang","doi":"10.1515/secm-2022-0226","DOIUrl":null,"url":null,"abstract":"Abstract In order to improve the chloride ion penetration resistance of supplementary cementitious materials (SCMs) in blended cement, this study optimizes the particle size distribution of cementitious components based on the Fuller model. Portland cement (PC), fly ash (FA), and ground granulated blast furnace slag (GGBFS) are successfully divided into four particle size ranges by precision air classifier, which are 0–8, 8–30, 30–50, and 50–80 μm, respectively. The optimum cementitious materials in four ranges based on 28-day compressive strength are determined by nine groups of orthogonal tests. The blended cement with optimal performance is obtained by GGBFS in 0–8 μm, PC in 8–30 μm, GGBFS in 30–50 μm, and FA in 50–80 μm. The results show that the blended cement with SCMs based on Fuller model have superior microstructure and chloride ion penetration resistance, which is due to their smaller pore size, a strong volcanic ash effect, and chloride ion binding ability. In addition, this research presents a novel approach for realizing the application of a large amount of SCMs in blended cement.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of particle size distribution on microstructure and chloride permeability of blended cement with supplementary cementitious materials\",\"authors\":\"Ge Gao, Qiang Li, Hongjie Luo, Xiao Huang\",\"doi\":\"10.1515/secm-2022-0226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to improve the chloride ion penetration resistance of supplementary cementitious materials (SCMs) in blended cement, this study optimizes the particle size distribution of cementitious components based on the Fuller model. Portland cement (PC), fly ash (FA), and ground granulated blast furnace slag (GGBFS) are successfully divided into four particle size ranges by precision air classifier, which are 0–8, 8–30, 30–50, and 50–80 μm, respectively. The optimum cementitious materials in four ranges based on 28-day compressive strength are determined by nine groups of orthogonal tests. The blended cement with optimal performance is obtained by GGBFS in 0–8 μm, PC in 8–30 μm, GGBFS in 30–50 μm, and FA in 50–80 μm. The results show that the blended cement with SCMs based on Fuller model have superior microstructure and chloride ion penetration resistance, which is due to their smaller pore size, a strong volcanic ash effect, and chloride ion binding ability. In addition, this research presents a novel approach for realizing the application of a large amount of SCMs in blended cement.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0226\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/secm-2022-0226","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Effect of particle size distribution on microstructure and chloride permeability of blended cement with supplementary cementitious materials
Abstract In order to improve the chloride ion penetration resistance of supplementary cementitious materials (SCMs) in blended cement, this study optimizes the particle size distribution of cementitious components based on the Fuller model. Portland cement (PC), fly ash (FA), and ground granulated blast furnace slag (GGBFS) are successfully divided into four particle size ranges by precision air classifier, which are 0–8, 8–30, 30–50, and 50–80 μm, respectively. The optimum cementitious materials in four ranges based on 28-day compressive strength are determined by nine groups of orthogonal tests. The blended cement with optimal performance is obtained by GGBFS in 0–8 μm, PC in 8–30 μm, GGBFS in 30–50 μm, and FA in 50–80 μm. The results show that the blended cement with SCMs based on Fuller model have superior microstructure and chloride ion penetration resistance, which is due to their smaller pore size, a strong volcanic ash effect, and chloride ion binding ability. In addition, this research presents a novel approach for realizing the application of a large amount of SCMs in blended cement.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.