{"title":"FPGN:传染病预防跟随者预测框架","authors":"Jianke Yu, Xianhang Zhang, Hanchen Wang, Xiaoyang Wang, Wenjie Zhang, Ying Zhang","doi":"10.1007/s11280-023-01205-8","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, how to prevent the widespread transmission of infectious diseases in communities has been a research hot spot. Tracing close contact with infected individuals is one of the most severe problems. In this work, we present a model called Follower Prediction Graph Network (FPGN) to identify high-risk visitors, which is known as follower prediction. The model is designed to identify visitors who may be infected with a disease by tracking their activities at the exact location of infected visitors. FPGN is inspired by the state-of-the-art temporal graph edge prediction algorithm TGN and draws on the shortcomings of existing algorithms. It utilizes graph structure information based on ( $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> , $$\\beta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>β</mml:mi> </mml:math> )-core, time interval statistics by using the statistics of timestamp information, and a GAT-based prediction module to achieve high accuracy in follower prediction. Extensive experiments are conducted on two real datasets, demonstrating the progress of FPGN. The experimental results show that FPGN can achieve the highest results compared with other SOTA baselines. Its AP scores are higher than 0.46, and its AUC scores are higher than 0.62.","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGN: follower prediction framework for infectious disease prevention\",\"authors\":\"Jianke Yu, Xianhang Zhang, Hanchen Wang, Xiaoyang Wang, Wenjie Zhang, Ying Zhang\",\"doi\":\"10.1007/s11280-023-01205-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, how to prevent the widespread transmission of infectious diseases in communities has been a research hot spot. Tracing close contact with infected individuals is one of the most severe problems. In this work, we present a model called Follower Prediction Graph Network (FPGN) to identify high-risk visitors, which is known as follower prediction. The model is designed to identify visitors who may be infected with a disease by tracking their activities at the exact location of infected visitors. FPGN is inspired by the state-of-the-art temporal graph edge prediction algorithm TGN and draws on the shortcomings of existing algorithms. It utilizes graph structure information based on ( $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> , $$\\\\beta $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>β</mml:mi> </mml:math> )-core, time interval statistics by using the statistics of timestamp information, and a GAT-based prediction module to achieve high accuracy in follower prediction. Extensive experiments are conducted on two real datasets, demonstrating the progress of FPGN. The experimental results show that FPGN can achieve the highest results compared with other SOTA baselines. Its AP scores are higher than 0.46, and its AUC scores are higher than 0.62.\",\"PeriodicalId\":49356,\"journal\":{\"name\":\"World Wide Web-Internet and Web Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web-Internet and Web Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-023-01205-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web-Internet and Web Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-023-01205-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
FPGN: follower prediction framework for infectious disease prevention
Abstract In recent years, how to prevent the widespread transmission of infectious diseases in communities has been a research hot spot. Tracing close contact with infected individuals is one of the most severe problems. In this work, we present a model called Follower Prediction Graph Network (FPGN) to identify high-risk visitors, which is known as follower prediction. The model is designed to identify visitors who may be infected with a disease by tracking their activities at the exact location of infected visitors. FPGN is inspired by the state-of-the-art temporal graph edge prediction algorithm TGN and draws on the shortcomings of existing algorithms. It utilizes graph structure information based on ( $$\alpha $$ α , $$\beta $$ β )-core, time interval statistics by using the statistics of timestamp information, and a GAT-based prediction module to achieve high accuracy in follower prediction. Extensive experiments are conducted on two real datasets, demonstrating the progress of FPGN. The experimental results show that FPGN can achieve the highest results compared with other SOTA baselines. Its AP scores are higher than 0.46, and its AUC scores are higher than 0.62.
期刊介绍:
World Wide Web: Internet and Web Information Systems (WWW) is an international, archival, peer-reviewed journal which covers all aspects of the World Wide Web, including issues related to architectures, applications, Internet and Web information systems, and communities. The purpose of this journal is to provide an international forum for researchers, professionals, and industrial practitioners to share their rapidly developing knowledge and report on new advances in Internet and web-based systems. The journal also focuses on all database- and information-system topics that relate to the Internet and the Web, particularly on ways to model, design, develop, integrate, and manage these systems.
Appearing quarterly, the journal publishes (1) papers describing original ideas and new results, (2) vision papers, (3) reviews of important techniques in related areas, (4) innovative application papers, and (5) progress reports on major international research projects. Papers published in the WWW journal deal with subjects directly or indirectly related to the World Wide Web. The WWW journal provides timely, in-depth coverage of the most recent developments in the World Wide Web discipline to enable anyone involved to keep up-to-date with this dynamically changing technology.