利用 PTFV 实现分形网格引发的湍流强度:网格几何形状的影响

IF 2 3区 工程技术 Q3 MECHANICS
Ted Sian Lee, Ean Hin Ooi, Wei Sea Chang, Ji Jinn Foo
{"title":"利用 PTFV 实现分形网格引发的湍流强度:网格几何形状的影响","authors":"Ted Sian Lee,&nbsp;Ean Hin Ooi,&nbsp;Wei Sea Chang,&nbsp;Ji Jinn Foo","doi":"10.1007/s10494-023-00480-9","DOIUrl":null,"url":null,"abstract":"<div><p>The unravelling of multilength-scale insert-generated turbulence, particularly, the induced-forcing plays critical role in the fundamental comprehension of energy formation and decay as a function of grid conformation. This study experimentally investigates the flow mechanical characteristics at <i>Re</i><sub><i>Dh</i></sub> = 4.1 × 10<sup>4</sup> for a regular-grid (RG), single-square-grid (SSG) and six 2D planar space-filling square-fractal-grids (SFG) of different fractal iterations (<i>N</i>), thickness ratios (<i>t</i><sub><i>r</i></sub>) and blockage ratios (<i>σ</i>) via piezoelectric thin-film flapping velocimetry (PTFV). Thin-film’s tip-deflection (<i>δ</i><sub><i>rms</i></sub>) and voltage response (<i>V</i><sub><i>rms</i></sub>) analysis along the grids’ centreline reveals increasing flow fluctuation strength with increasing <i>σ</i>, <i>t</i><sub><i>r</i></sub> and decreasing <i>N</i>, owing to higher shedding intensity of lower frequency, larger scale energy-containing vortices from thicker first iteration bar. However, higher: energy dissipation rate, centreline mean velocity decrement rate and local deceleration experienced in the turbulence decay region of larger <i>t</i><sub><i>r</i></sub> grid, along with additional fractal scales lead to less potent flow-structure-interplay on thin-film undulation. More importantly, SSG-generated turbulence enables the generation of average (<i>V</i><sub><i>rms</i></sub>, <i>δ</i><sub><i>rms</i></sub>) and millinewton turbulence forcing <i>F</i><sub><i>rms</i></sub> that are respectively, 9× and 5× larger than RG of similar <i>σ</i>, and 2× larger than the best performing <i>N</i> = 3 SFG. Our findings disclose the importance of grid geometrical management for effective utilisation of turbulence-generating grids in engineering applications.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"111 4","pages":"1079 - 1099"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00480-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Realisation of Fractal Grid-Induced Turbulence Strength with PTFV: Effects of Grid Geometry\",\"authors\":\"Ted Sian Lee,&nbsp;Ean Hin Ooi,&nbsp;Wei Sea Chang,&nbsp;Ji Jinn Foo\",\"doi\":\"10.1007/s10494-023-00480-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unravelling of multilength-scale insert-generated turbulence, particularly, the induced-forcing plays critical role in the fundamental comprehension of energy formation and decay as a function of grid conformation. This study experimentally investigates the flow mechanical characteristics at <i>Re</i><sub><i>Dh</i></sub> = 4.1 × 10<sup>4</sup> for a regular-grid (RG), single-square-grid (SSG) and six 2D planar space-filling square-fractal-grids (SFG) of different fractal iterations (<i>N</i>), thickness ratios (<i>t</i><sub><i>r</i></sub>) and blockage ratios (<i>σ</i>) via piezoelectric thin-film flapping velocimetry (PTFV). Thin-film’s tip-deflection (<i>δ</i><sub><i>rms</i></sub>) and voltage response (<i>V</i><sub><i>rms</i></sub>) analysis along the grids’ centreline reveals increasing flow fluctuation strength with increasing <i>σ</i>, <i>t</i><sub><i>r</i></sub> and decreasing <i>N</i>, owing to higher shedding intensity of lower frequency, larger scale energy-containing vortices from thicker first iteration bar. However, higher: energy dissipation rate, centreline mean velocity decrement rate and local deceleration experienced in the turbulence decay region of larger <i>t</i><sub><i>r</i></sub> grid, along with additional fractal scales lead to less potent flow-structure-interplay on thin-film undulation. More importantly, SSG-generated turbulence enables the generation of average (<i>V</i><sub><i>rms</i></sub>, <i>δ</i><sub><i>rms</i></sub>) and millinewton turbulence forcing <i>F</i><sub><i>rms</i></sub> that are respectively, 9× and 5× larger than RG of similar <i>σ</i>, and 2× larger than the best performing <i>N</i> = 3 SFG. Our findings disclose the importance of grid geometrical management for effective utilisation of turbulence-generating grids in engineering applications.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"111 4\",\"pages\":\"1079 - 1099\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-023-00480-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-023-00480-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00480-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

揭示多长尺度插入生成的湍流,特别是诱导强迫,对于从根本上理解能量形成和衰减与网格构象的函数关系起着至关重要的作用。本研究通过压电薄膜拍击测速仪(PTFV),实验研究了规则网格(RG)、单方格网格(SSG)和不同分形迭代(N)、厚度比(tr)和阻塞比(σ)的六个二维平面空间填充方形分形网格(SFG)在 ReDh = 4.1 × 104 条件下的流动力学特性。沿网格中心线进行的薄膜尖端偏转(δrms)和电压响应(Vrms)分析表明,随着σ、tr 的增大和 N 的减小,流动波动强度也会增大,这是因为较厚的第一迭代条上频率较低、尺度较大的含能涡旋的脱落强度较高。然而,在较大的 tr 网格的湍流衰减区域中,能量耗散率、中心线平均速度下降率和局部减速率较高,再加上额外的分形尺度,导致薄膜起伏上的流动-结构相互作用不那么强烈。更重要的是,SSG 产生的湍流能产生平均(Vrms、δrms)和毫牛顿湍流强迫 Frms,分别比相似 σ 的 RG 大 9 倍和 5 倍,比性能最好的 N = 3 SFG 大 2 倍。我们的研究结果揭示了网格几何管理对于在工程应用中有效利用湍流生成网格的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Realisation of Fractal Grid-Induced Turbulence Strength with PTFV: Effects of Grid Geometry

Realisation of Fractal Grid-Induced Turbulence Strength with PTFV: Effects of Grid Geometry

The unravelling of multilength-scale insert-generated turbulence, particularly, the induced-forcing plays critical role in the fundamental comprehension of energy formation and decay as a function of grid conformation. This study experimentally investigates the flow mechanical characteristics at ReDh = 4.1 × 104 for a regular-grid (RG), single-square-grid (SSG) and six 2D planar space-filling square-fractal-grids (SFG) of different fractal iterations (N), thickness ratios (tr) and blockage ratios (σ) via piezoelectric thin-film flapping velocimetry (PTFV). Thin-film’s tip-deflection (δrms) and voltage response (Vrms) analysis along the grids’ centreline reveals increasing flow fluctuation strength with increasing σ, tr and decreasing N, owing to higher shedding intensity of lower frequency, larger scale energy-containing vortices from thicker first iteration bar. However, higher: energy dissipation rate, centreline mean velocity decrement rate and local deceleration experienced in the turbulence decay region of larger tr grid, along with additional fractal scales lead to less potent flow-structure-interplay on thin-film undulation. More importantly, SSG-generated turbulence enables the generation of average (Vrms, δrms) and millinewton turbulence forcing Frms that are respectively, 9× and 5× larger than RG of similar σ, and 2× larger than the best performing N = 3 SFG. Our findings disclose the importance of grid geometrical management for effective utilisation of turbulence-generating grids in engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信