{"title":"空心圆柱壳和截锥壳爆炸载荷的动力响应","authors":"","doi":"10.21152/1750-9548.17.3.269","DOIUrl":null,"url":null,"abstract":"Hollow cylindrical and truncated conical shells depict enhanced torsional and shear resistance compared to beams and plates and are ubiquitously used in structures in aeronautics, submarines, wind turbines, pressure vessels, and transmission pylons. Upon extensive localised blast, these elements undergo local and global deformation and failure. The detrimental damage to the shell depends on the stand-off and charge mass and is proportional to the emerged local dynamic stresses and inelastic deformations. Large localised translations relocate the structure’s original pivot point and induce global rotations about the new one which raises the probability of structural collapse. In this work, we examine large plastic deformations of hollow cylindrical and truncated conical shells subject to a range of pulse pressures emanated from high explosives. Fluid-Structure Interaction (FSI)-based Finite Element (FE) models were developed to discern the characteristics of blasts at various stand-offs and functions were proposed to link load parameters to structural, material, and geometric properties.","PeriodicalId":51903,"journal":{"name":"International Journal of Multiphysics","volume":"166 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic response of blast loaded Hollow Cylindrical and Truncated Conical shells\",\"authors\":\"\",\"doi\":\"10.21152/1750-9548.17.3.269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hollow cylindrical and truncated conical shells depict enhanced torsional and shear resistance compared to beams and plates and are ubiquitously used in structures in aeronautics, submarines, wind turbines, pressure vessels, and transmission pylons. Upon extensive localised blast, these elements undergo local and global deformation and failure. The detrimental damage to the shell depends on the stand-off and charge mass and is proportional to the emerged local dynamic stresses and inelastic deformations. Large localised translations relocate the structure’s original pivot point and induce global rotations about the new one which raises the probability of structural collapse. In this work, we examine large plastic deformations of hollow cylindrical and truncated conical shells subject to a range of pulse pressures emanated from high explosives. Fluid-Structure Interaction (FSI)-based Finite Element (FE) models were developed to discern the characteristics of blasts at various stand-offs and functions were proposed to link load parameters to structural, material, and geometric properties.\",\"PeriodicalId\":51903,\"journal\":{\"name\":\"International Journal of Multiphysics\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21152/1750-9548.17.3.269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21152/1750-9548.17.3.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamic response of blast loaded Hollow Cylindrical and Truncated Conical shells
Hollow cylindrical and truncated conical shells depict enhanced torsional and shear resistance compared to beams and plates and are ubiquitously used in structures in aeronautics, submarines, wind turbines, pressure vessels, and transmission pylons. Upon extensive localised blast, these elements undergo local and global deformation and failure. The detrimental damage to the shell depends on the stand-off and charge mass and is proportional to the emerged local dynamic stresses and inelastic deformations. Large localised translations relocate the structure’s original pivot point and induce global rotations about the new one which raises the probability of structural collapse. In this work, we examine large plastic deformations of hollow cylindrical and truncated conical shells subject to a range of pulse pressures emanated from high explosives. Fluid-Structure Interaction (FSI)-based Finite Element (FE) models were developed to discern the characteristics of blasts at various stand-offs and functions were proposed to link load parameters to structural, material, and geometric properties.