非齐次抛物型偏微分方程的Besov正则性

Cornelia Schneider, Flóra Orsolya Szemenyei
{"title":"非齐次抛物型偏微分方程的Besov正则性","authors":"Cornelia Schneider, Flóra Orsolya Szemenyei","doi":"10.1007/s42985-023-00262-y","DOIUrl":null,"url":null,"abstract":"Abstract We study the regularity of solutions of parabolic partial differential equations with inhomogeneous boundary conditions on polyhedral domains $$D\\subset \\mathbb {R}^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:math> in the specific scale $$\\ B^{\\alpha }_{\\tau ,\\tau }, \\ \\frac{1}{\\tau }=\\frac{\\alpha }{3}+\\frac{1}{p}\\ $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mspace /> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>τ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>τ</mml:mi> </mml:mfrac> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mi>α</mml:mi> <mml:mn>3</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>p</mml:mi> </mml:mfrac> <mml:mspace /> </mml:mrow> </mml:math> of Besov spaces. The regularity of the solution in this scale determines the order of approximation that can be achieved by adaptive numerical schemes. We show that for all cases under consideration the Besov regularity is high enough to justify the use of adaptive algorithms. Our results are in good agreement with the forerunner (Dahlke and Schneider in Anal Appl 17:235–291, 2019), where parabolic equations with homogeneous boundary conditions were investigated.","PeriodicalId":74818,"journal":{"name":"SN partial differential equations and applications","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Besov regularity of inhomogeneous parabolic PDEs\",\"authors\":\"Cornelia Schneider, Flóra Orsolya Szemenyei\",\"doi\":\"10.1007/s42985-023-00262-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the regularity of solutions of parabolic partial differential equations with inhomogeneous boundary conditions on polyhedral domains $$D\\\\subset \\\\mathbb {R}^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:math> in the specific scale $$\\\\ B^{\\\\alpha }_{\\\\tau ,\\\\tau }, \\\\ \\\\frac{1}{\\\\tau }=\\\\frac{\\\\alpha }{3}+\\\\frac{1}{p}\\\\ $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mspace /> <mml:msubsup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mi>τ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>τ</mml:mi> </mml:mfrac> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mi>α</mml:mi> <mml:mn>3</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>p</mml:mi> </mml:mfrac> <mml:mspace /> </mml:mrow> </mml:math> of Besov spaces. The regularity of the solution in this scale determines the order of approximation that can be achieved by adaptive numerical schemes. We show that for all cases under consideration the Besov regularity is high enough to justify the use of adaptive algorithms. Our results are in good agreement with the forerunner (Dahlke and Schneider in Anal Appl 17:235–291, 2019), where parabolic equations with homogeneous boundary conditions were investigated.\",\"PeriodicalId\":74818,\"journal\":{\"name\":\"SN partial differential equations and applications\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SN partial differential equations and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42985-023-00262-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN partial differential equations and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42985-023-00262-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了多面体域$$D\subset \mathbb {R}^3$$ D∧R 3上具有非齐次边界条件的抛物型偏微分方程解在Besov空间的特定尺度$$\ B^{\alpha }_{\tau ,\tau }, \ \frac{1}{\tau }=\frac{\alpha }{3}+\frac{1}{p}\ $$ B τ, τ α, 1 τ = α 3 + 1 p下的正则性。该尺度下解的规律性决定了自适应数值格式所能达到的近似阶数。我们表明,在考虑的所有情况下,贝索夫正则性足够高,足以证明使用自适应算法是合理的。我们的结果与前人(Dahlke和Schneider in Anal appll 17:35 - 291, 2019)很好地一致,他们研究了具有齐次边界条件的抛物方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Besov regularity of inhomogeneous parabolic PDEs
Abstract We study the regularity of solutions of parabolic partial differential equations with inhomogeneous boundary conditions on polyhedral domains $$D\subset \mathbb {R}^3$$ D R 3 in the specific scale $$\ B^{\alpha }_{\tau ,\tau }, \ \frac{1}{\tau }=\frac{\alpha }{3}+\frac{1}{p}\ $$ B τ , τ α , 1 τ = α 3 + 1 p of Besov spaces. The regularity of the solution in this scale determines the order of approximation that can be achieved by adaptive numerical schemes. We show that for all cases under consideration the Besov regularity is high enough to justify the use of adaptive algorithms. Our results are in good agreement with the forerunner (Dahlke and Schneider in Anal Appl 17:235–291, 2019), where parabolic equations with homogeneous boundary conditions were investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信