类拉普拉斯Neumann问题解的存在性和多重性

IF 1.9 3区 数学 Q1 MATHEMATICS
Changmu Chu, Ying Tang
{"title":"类拉普拉斯Neumann问题解的存在性和多重性","authors":"Changmu Chu, Ying Tang","doi":"10.1155/2023/6692867","DOIUrl":null,"url":null,"abstract":"In the present paper, in view of the variational approach, we discuss the Neumann problems with <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>p</mi> <mfenced open=\"(\" close=\")\"> <mrow> <mi>x</mi> </mrow> </mfenced> </math> -Laplacian-like operator and nonstandard growth condition, originated from a capillary phenomena. By using the least action principle and fountain theorem, we prove the existence and multiplicity of solutions to the class of Neumann problems under suitable assumptions.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"18 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Existence and Multiplicity of Solutions for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\"> <mi>p</mi> <mfenced open=\\\"(\\\" close=\\\")\\\"> <mrow> <mi>x</mi> </mrow> </mfenced> </math>-Laplacian-Like Neumann Problems\",\"authors\":\"Changmu Chu, Ying Tang\",\"doi\":\"10.1155/2023/6692867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, in view of the variational approach, we discuss the Neumann problems with <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\"> <mi>p</mi> <mfenced open=\\\"(\\\" close=\\\")\\\"> <mrow> <mi>x</mi> </mrow> </mfenced> </math> -Laplacian-like operator and nonstandard growth condition, originated from a capillary phenomena. By using the least action principle and fountain theorem, we prove the existence and multiplicity of solutions to the class of Neumann problems under suitable assumptions.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6692867\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6692867","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文用变分方法讨论了一类由毛细现象引起的具有类拉普拉斯算子和非标准生长条件的Neumann问题。利用最小作用原理和喷泉定理,在适当的假设下,证明了一类Neumann问题解的存在性和多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Existence and Multiplicity of Solutions for p x -Laplacian-Like Neumann Problems
In the present paper, in view of the variational approach, we discuss the Neumann problems with p x -Laplacian-like operator and nonstandard growth condition, originated from a capillary phenomena. By using the least action principle and fountain theorem, we prove the existence and multiplicity of solutions to the class of Neumann problems under suitable assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信