{"title":"隔管式混合器的现代变种:设计、性能和应用","authors":"Seon Yeop Jung, Tae Gon Kang","doi":"10.1007/s13367-023-00069-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a comprehensive review of the partitioned pipe mixer (PPM) and its design variants: the barrier-embedded partitioned pipe mixer (BPPM) and the groove-embedded partitioned pipe mixer (GPPM). These mixers utilize chaotic advection as their mixing mechanism in the laminar flow regime. The review first focuses on the flow and mixing characteristics of these mixers, considering the influence of the operating conditions and design variables. The advantages and flexibility of the BPPM and GPPM over the original PPM are highlighted. The investigation covers mixing performance in both the creeping and non-creeping flow regimes. In addition, this review examines the impact of thixotropy and fluid inertia on mixing performance of the mixers, revealing irregular trends. It emphasizes the importance of carefully considering thixotropy and inertia when selecting appropriate mixing protocols and operating conditions. Furthermore, the potential use of chaotic mixing by the BPPM in filtration processes is briefly reviewed. In conclusion, the review summarizes the limitations of the previous studies and suggesting future research directions. Further studies are expected to explore the potential of these types of mixers in improving mixing performance in various industries, particularly those dealing with rheologically complex fluids.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":"35 4","pages":"229 - 247"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on modern variants of the partitioned pipe mixer: designs, performances, and applications\",\"authors\":\"Seon Yeop Jung, Tae Gon Kang\",\"doi\":\"10.1007/s13367-023-00069-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a comprehensive review of the partitioned pipe mixer (PPM) and its design variants: the barrier-embedded partitioned pipe mixer (BPPM) and the groove-embedded partitioned pipe mixer (GPPM). These mixers utilize chaotic advection as their mixing mechanism in the laminar flow regime. The review first focuses on the flow and mixing characteristics of these mixers, considering the influence of the operating conditions and design variables. The advantages and flexibility of the BPPM and GPPM over the original PPM are highlighted. The investigation covers mixing performance in both the creeping and non-creeping flow regimes. In addition, this review examines the impact of thixotropy and fluid inertia on mixing performance of the mixers, revealing irregular trends. It emphasizes the importance of carefully considering thixotropy and inertia when selecting appropriate mixing protocols and operating conditions. Furthermore, the potential use of chaotic mixing by the BPPM in filtration processes is briefly reviewed. In conclusion, the review summarizes the limitations of the previous studies and suggesting future research directions. Further studies are expected to explore the potential of these types of mixers in improving mixing performance in various industries, particularly those dealing with rheologically complex fluids.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":683,\"journal\":{\"name\":\"Korea-Australia Rheology Journal\",\"volume\":\"35 4\",\"pages\":\"229 - 247\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korea-Australia Rheology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13367-023-00069-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-023-00069-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
A review on modern variants of the partitioned pipe mixer: designs, performances, and applications
This paper presents a comprehensive review of the partitioned pipe mixer (PPM) and its design variants: the barrier-embedded partitioned pipe mixer (BPPM) and the groove-embedded partitioned pipe mixer (GPPM). These mixers utilize chaotic advection as their mixing mechanism in the laminar flow regime. The review first focuses on the flow and mixing characteristics of these mixers, considering the influence of the operating conditions and design variables. The advantages and flexibility of the BPPM and GPPM over the original PPM are highlighted. The investigation covers mixing performance in both the creeping and non-creeping flow regimes. In addition, this review examines the impact of thixotropy and fluid inertia on mixing performance of the mixers, revealing irregular trends. It emphasizes the importance of carefully considering thixotropy and inertia when selecting appropriate mixing protocols and operating conditions. Furthermore, the potential use of chaotic mixing by the BPPM in filtration processes is briefly reviewed. In conclusion, the review summarizes the limitations of the previous studies and suggesting future research directions. Further studies are expected to explore the potential of these types of mixers in improving mixing performance in various industries, particularly those dealing with rheologically complex fluids.
期刊介绍:
The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.