Rida Ait El Manssour, Yassine El Maazouz, Enis Kaya, Kemal Rose
{"title":"p进曲面和实立方曲面上的直线","authors":"Rida Ait El Manssour, Yassine El Maazouz, Enis Kaya, Kemal Rose","doi":"10.1007/s12188-023-00269-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study lines on smooth cubic surfaces over the field of <i>p</i>-adic numbers, from a theoretical and computational point of view. Segre showed that the possible counts of such lines are 0, 1, 2, 3, 5, 7, 9, 15 or 27. We show that each of these counts is achieved. Probabilistic aspects are investigated by sampling both <i>p</i>-adic and real cubic surfaces from different distributions and estimating the probability of each count.We link this to recent results on probabilistic enumerative geometry. Some experimental results on the Galois groups attached to <i>p</i>-adic cubic surfaces are also discussed.\n</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lines on p-adic and real cubic surfaces\",\"authors\":\"Rida Ait El Manssour, Yassine El Maazouz, Enis Kaya, Kemal Rose\",\"doi\":\"10.1007/s12188-023-00269-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study lines on smooth cubic surfaces over the field of <i>p</i>-adic numbers, from a theoretical and computational point of view. Segre showed that the possible counts of such lines are 0, 1, 2, 3, 5, 7, 9, 15 or 27. We show that each of these counts is achieved. Probabilistic aspects are investigated by sampling both <i>p</i>-adic and real cubic surfaces from different distributions and estimating the probability of each count.We link this to recent results on probabilistic enumerative geometry. Some experimental results on the Galois groups attached to <i>p</i>-adic cubic surfaces are also discussed.\\n</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-023-00269-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-023-00269-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study lines on smooth cubic surfaces over the field of p-adic numbers, from a theoretical and computational point of view. Segre showed that the possible counts of such lines are 0, 1, 2, 3, 5, 7, 9, 15 or 27. We show that each of these counts is achieved. Probabilistic aspects are investigated by sampling both p-adic and real cubic surfaces from different distributions and estimating the probability of each count.We link this to recent results on probabilistic enumerative geometry. Some experimental results on the Galois groups attached to p-adic cubic surfaces are also discussed.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.