{"title":"关于限制系数多项式的零点","authors":"B. A. Zargar, M. H. Gulzar, M. Ali","doi":"10.2478/amsil-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>P</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>z</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mo>∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mi>j</m:mi> </m:msub> <m:msup> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mi>j</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> P\\left( z \\right) = \\sum\\nolimits_{j = 0}^n {{a_j}{z^j}} be a polynomial of degree n such that a n ≥ a n− 1 ≥ . . . ≥ a 1 ≥ a 0 ≥ 0. Then according to Eneström-Kakeya theorem all the zeros of P ( z ) lie in |z| ≤ 1. This result has been generalized in various ways (see [1, 3, 4, 6, 7]). In this paper we shall prove some generalizations of the results due to Aziz and Zargar [1, 2] and Nwaeze [7].","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"14 4 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Zeros of Polynomials with Restricted Coefficients\",\"authors\":\"B. A. Zargar, M. H. Gulzar, M. Ali\",\"doi\":\"10.2478/amsil-2023-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:mi>P</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>z</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mo>∑</m:mo> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:mrow> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mi>j</m:mi> </m:msub> <m:msup> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mi>j</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> P\\\\left( z \\\\right) = \\\\sum\\\\nolimits_{j = 0}^n {{a_j}{z^j}} be a polynomial of degree n such that a n ≥ a n− 1 ≥ . . . ≥ a 1 ≥ a 0 ≥ 0. Then according to Eneström-Kakeya theorem all the zeros of P ( z ) lie in |z| ≤ 1. This result has been generalized in various ways (see [1, 3, 4, 6, 7]). In this paper we shall prove some generalizations of the results due to Aziz and Zargar [1, 2] and Nwaeze [7].\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"14 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要设P (z) =∑j = 0 n a jz j P \left (z \right) = \sum\nolimits _j = 0{^n }a_jz{{^j}{是一个n次多项式,使得a n≥a n−1≥…≥a 1≥a 0≥0。然后根据Eneström-Kakeya定理,P (z)的所有零点都在|z|≤1。这个结果已经以各种方式推广(见[1,3,4,6,7])。在本文中,我们将证明由Aziz和Zargar[1,2]和Nwaeze[7]所得到的结果的一些推广。}}
On the Zeros of Polynomials with Restricted Coefficients
Abstract Let P(z)=∑j=0najzj P\left( z \right) = \sum\nolimits_{j = 0}^n {{a_j}{z^j}} be a polynomial of degree n such that a n ≥ a n− 1 ≥ . . . ≥ a 1 ≥ a 0 ≥ 0. Then according to Eneström-Kakeya theorem all the zeros of P ( z ) lie in |z| ≤ 1. This result has been generalized in various ways (see [1, 3, 4, 6, 7]). In this paper we shall prove some generalizations of the results due to Aziz and Zargar [1, 2] and Nwaeze [7].