冥王星代码的自重力模块

IF 8.6 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Ankush Mandal, Dipanjan Mukherjee, Andrea Mignone
{"title":"冥王星代码的自重力模块","authors":"Ankush Mandal, Dipanjan Mukherjee, Andrea Mignone","doi":"10.3847/1538-4365/aced0a","DOIUrl":null,"url":null,"abstract":"Abstract We present a novel implementation of an iterative solver for the solution of Poisson’s equation in the PLUTO code for astrophysical fluid dynamics. Our solver relies on a relaxation method in which convergence is sought as the steady-state solution of a parabolic equation, whose time discretization is governed by the Runge–Kutta–Legendre (RKL) method. Our findings indicate that the RKL-based Poisson solver, which is both fully parallel and rapidly convergent, has the potential to serve as a practical alternative to conventional iterative solvers such as the Gauss–Seidel and successive overrelaxation methods. Additionally, it can mitigate some of the drawbacks of these traditional techniques. We incorporate our algorithm into a multigrid solver to provide a simple and efficient gravity solver that can be used to obtain the gravitational potentials in self-gravitational hydrodynamics. We test our implementation against a broad range of standard self-gravitating astrophysical problems designed to examine different aspects of the code. We demonstrate that the results match excellently with analytical predictions (when available), and the findings of similar previous studies.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"46 1","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Self-gravity Module for the PLUTO Code\",\"authors\":\"Ankush Mandal, Dipanjan Mukherjee, Andrea Mignone\",\"doi\":\"10.3847/1538-4365/aced0a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a novel implementation of an iterative solver for the solution of Poisson’s equation in the PLUTO code for astrophysical fluid dynamics. Our solver relies on a relaxation method in which convergence is sought as the steady-state solution of a parabolic equation, whose time discretization is governed by the Runge–Kutta–Legendre (RKL) method. Our findings indicate that the RKL-based Poisson solver, which is both fully parallel and rapidly convergent, has the potential to serve as a practical alternative to conventional iterative solvers such as the Gauss–Seidel and successive overrelaxation methods. Additionally, it can mitigate some of the drawbacks of these traditional techniques. We incorporate our algorithm into a multigrid solver to provide a simple and efficient gravity solver that can be used to obtain the gravitational potentials in self-gravitational hydrodynamics. We test our implementation against a broad range of standard self-gravitating astrophysical problems designed to examine different aspects of the code. We demonstrate that the results match excellently with analytical predictions (when available), and the findings of similar previous studies.\",\"PeriodicalId\":8588,\"journal\":{\"name\":\"Astrophysical Journal Supplement Series\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/aced0a\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/aced0a","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的天体物理流体动力学PLUTO代码中泊松方程迭代求解器的实现方法。我们的求解器依赖于一种松弛方法,该方法将收敛作为抛物方程的稳态解,其时间离散由龙格-库塔-勒让德(RKL)方法控制。我们的研究结果表明,基于rkl的泊松求解器具有完全并行和快速收敛的特点,有可能成为传统迭代求解器(如Gauss-Seidel和连续过松弛方法)的实用替代方案。此外,它还可以减轻这些传统技术的一些缺点。我们将该算法整合到一个多网格求解器中,提供了一个简单有效的重力求解器,可用于获得自重力流体力学中的重力势。我们针对一系列标准的自引力天体物理问题来测试我们的实现,这些问题旨在检查代码的不同方面。我们证明了结果与分析预测(如果可用)以及类似先前研究的结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Self-gravity Module for the PLUTO Code
Abstract We present a novel implementation of an iterative solver for the solution of Poisson’s equation in the PLUTO code for astrophysical fluid dynamics. Our solver relies on a relaxation method in which convergence is sought as the steady-state solution of a parabolic equation, whose time discretization is governed by the Runge–Kutta–Legendre (RKL) method. Our findings indicate that the RKL-based Poisson solver, which is both fully parallel and rapidly convergent, has the potential to serve as a practical alternative to conventional iterative solvers such as the Gauss–Seidel and successive overrelaxation methods. Additionally, it can mitigate some of the drawbacks of these traditional techniques. We incorporate our algorithm into a multigrid solver to provide a simple and efficient gravity solver that can be used to obtain the gravitational potentials in self-gravitational hydrodynamics. We test our implementation against a broad range of standard self-gravitating astrophysical problems designed to examine different aspects of the code. We demonstrate that the results match excellently with analytical predictions (when available), and the findings of similar previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysical Journal Supplement Series
Astrophysical Journal Supplement Series 地学天文-天文与天体物理
CiteScore
14.50
自引率
5.70%
发文量
264
审稿时长
2 months
期刊介绍: The Astrophysical Journal Supplement (ApJS) serves as an open-access journal that publishes significant articles featuring extensive data or calculations in the field of astrophysics. It also facilitates Special Issues, presenting thematically related papers simultaneously in a single volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信