块最大化-最小化子空间方法的收敛性分析

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Emilie Chouzenoux, Jean-Baptiste Fest
{"title":"块最大化-最小化子空间方法的收敛性分析","authors":"Emilie Chouzenoux, Jean-Baptiste Fest","doi":"10.1007/s11590-023-02055-z","DOIUrl":null,"url":null,"abstract":"We consider the minimization of a differentiable Lipschitz gradient but non necessarily convex, function F defined on $${\\mathbb {R}}^N$$ . We propose an accelerated gradient descent approach which combines three strategies, namely (i) a variable metric derived from the majorization-minimization principle; (ii) a subspace strategy incorporating information from the past iterates; (iii) a block alternating update. Under the assumption that F satisfies the Kurdyka–Łojasiewicz property, we give conditions under which the sequence generated by the resulting block majorize-minimize subspace algorithm converges to a critical point of the objective function, and we exhibit convergence rates for its iterates.","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"18 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convergence analysis of block majorize-minimize subspace approach\",\"authors\":\"Emilie Chouzenoux, Jean-Baptiste Fest\",\"doi\":\"10.1007/s11590-023-02055-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the minimization of a differentiable Lipschitz gradient but non necessarily convex, function F defined on $${\\\\mathbb {R}}^N$$ . We propose an accelerated gradient descent approach which combines three strategies, namely (i) a variable metric derived from the majorization-minimization principle; (ii) a subspace strategy incorporating information from the past iterates; (iii) a block alternating update. Under the assumption that F satisfies the Kurdyka–Łojasiewicz property, we give conditions under which the sequence generated by the resulting block majorize-minimize subspace algorithm converges to a critical point of the objective function, and we exhibit convergence rates for its iterates.\",\"PeriodicalId\":49720,\"journal\":{\"name\":\"Optimization Letters\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-023-02055-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11590-023-02055-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑在$${\mathbb {R}}^N$$上定义的可微Lipschitz梯度但不一定是凸的函数F的最小化。我们提出了一种加速梯度下降方法,该方法结合了三种策略,即(i)由最大化-最小化原则导出的变量度量;(ii)包含过去迭代信息的子空间策略;(iii)块交替更新。在F满足Kurdyka -Łojasiewicz性质的假设下,给出了由块最大化最小化子空间算法生成的序列收敛于目标函数的一个临界点的条件,并给出了其迭代的收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Convergence analysis of block majorize-minimize subspace approach

Convergence analysis of block majorize-minimize subspace approach
We consider the minimization of a differentiable Lipschitz gradient but non necessarily convex, function F defined on $${\mathbb {R}}^N$$ . We propose an accelerated gradient descent approach which combines three strategies, namely (i) a variable metric derived from the majorization-minimization principle; (ii) a subspace strategy incorporating information from the past iterates; (iii) a block alternating update. Under the assumption that F satisfies the Kurdyka–Łojasiewicz property, we give conditions under which the sequence generated by the resulting block majorize-minimize subspace algorithm converges to a critical point of the objective function, and we exhibit convergence rates for its iterates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimization Letters
Optimization Letters 管理科学-应用数学
CiteScore
3.40
自引率
6.20%
发文量
116
审稿时长
9 months
期刊介绍: Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published. Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field. Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信