天才:将军。io代理开发和数据收集框架

Aaditya Bhatia, Austin Davis, Soumik Ghosh, Gita Sukthankar
{"title":"天才:将军。io代理开发和数据收集框架","authors":"Aaditya Bhatia, Austin Davis, Soumik Ghosh, Gita Sukthankar","doi":"10.1609/aiide.v19i1.27536","DOIUrl":null,"url":null,"abstract":"We present an agent development and data collection framework for Generals.io (GIO)--a real-time strategy game with imperfect information in which players attempt to gain control of opponents' starting positions within a 2D grid world. The framework provides event-based communication amongst several modules implemented as microservices, enabling real-time data collection from GIO's streaming data. Its modular design facilitates rapid bot development and testing, while the emphasis on data collection makes it easy to analyze agent performance. We use this framework in a case study of a top-performing GIO agent called Flobot. Our analysis demonstrates that Flobot's performance varies based on its starting position. Based on the analysis performed with our framework, we propose a modification to Flobot's pathfinding algorithm. Statistical tests show that the new algorithm results in a significant reduction in performance variance.","PeriodicalId":498041,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generally Genius: A Generals.io Agent Development and Data Collection Framework\",\"authors\":\"Aaditya Bhatia, Austin Davis, Soumik Ghosh, Gita Sukthankar\",\"doi\":\"10.1609/aiide.v19i1.27536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an agent development and data collection framework for Generals.io (GIO)--a real-time strategy game with imperfect information in which players attempt to gain control of opponents' starting positions within a 2D grid world. The framework provides event-based communication amongst several modules implemented as microservices, enabling real-time data collection from GIO's streaming data. Its modular design facilitates rapid bot development and testing, while the emphasis on data collection makes it easy to analyze agent performance. We use this framework in a case study of a top-performing GIO agent called Flobot. Our analysis demonstrates that Flobot's performance varies based on its starting position. Based on the analysis performed with our framework, we propose a modification to Flobot's pathfinding algorithm. Statistical tests show that the new algorithm results in a significant reduction in performance variance.\",\"PeriodicalId\":498041,\"journal\":{\"name\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v19i1.27536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v19i1.27536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个将军代理开发和数据收集框架。io (GIO)——一款具有不完全信息的实时策略游戏,玩家试图在2D网格世界中控制对手的起始位置。该框架在实现为微服务的几个模块之间提供基于事件的通信,支持从GIO的流数据中实时收集数据。它的模块化设计有助于快速开发和测试机器人,而对数据收集的重视使分析代理性能变得容易。我们在一个名为Flobot的顶级GIO代理的案例研究中使用了这个框架。我们的分析表明,Flobot的表现取决于它的起始位置。基于对我们的框架进行的分析,我们提出了对Flobot寻路算法的修改。统计测试表明,新算法显著降低了性能差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generally Genius: A Generals.io Agent Development and Data Collection Framework
We present an agent development and data collection framework for Generals.io (GIO)--a real-time strategy game with imperfect information in which players attempt to gain control of opponents' starting positions within a 2D grid world. The framework provides event-based communication amongst several modules implemented as microservices, enabling real-time data collection from GIO's streaming data. Its modular design facilitates rapid bot development and testing, while the emphasis on data collection makes it easy to analyze agent performance. We use this framework in a case study of a top-performing GIO agent called Flobot. Our analysis demonstrates that Flobot's performance varies based on its starting position. Based on the analysis performed with our framework, we propose a modification to Flobot's pathfinding algorithm. Statistical tests show that the new algorithm results in a significant reduction in performance variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信