面向过程内容生成的概率逻辑编程语义

Abdelrahman Madkour, Chris Martens, Steven Holtzen, Casper Harteveld, Stacy Marsella
{"title":"面向过程内容生成的概率逻辑编程语义","authors":"Abdelrahman Madkour, Chris Martens, Steven Holtzen, Casper Harteveld, Stacy Marsella","doi":"10.1609/aiide.v19i1.27525","DOIUrl":null,"url":null,"abstract":"Research in procedural content generation (PCG) has recently heralded two major methodologies: machine learning (PCGML) and declarative programming. The former shows promise by automating the specification of quality criteria through latent patterns in data, while the latter offers significant advantages for authorial control. In this paper we propose the use of probabilistic logic as a unifying framework that combines the benefits of both methodologies. We propose a Bayesian formalization of content generators as probability distributions and show how common PCG tasks map naturally to operations on the distribution. Further, through a series of experiments with maze generation, we demonstrate how probabilistic logic semantics allows us to leverage the authorial control of declarative programming and the flexibility of learning from data.","PeriodicalId":498041,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Logic Programming Semantics For Procedural Content Generation\",\"authors\":\"Abdelrahman Madkour, Chris Martens, Steven Holtzen, Casper Harteveld, Stacy Marsella\",\"doi\":\"10.1609/aiide.v19i1.27525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research in procedural content generation (PCG) has recently heralded two major methodologies: machine learning (PCGML) and declarative programming. The former shows promise by automating the specification of quality criteria through latent patterns in data, while the latter offers significant advantages for authorial control. In this paper we propose the use of probabilistic logic as a unifying framework that combines the benefits of both methodologies. We propose a Bayesian formalization of content generators as probability distributions and show how common PCG tasks map naturally to operations on the distribution. Further, through a series of experiments with maze generation, we demonstrate how probabilistic logic semantics allows us to leverage the authorial control of declarative programming and the flexibility of learning from data.\",\"PeriodicalId\":498041,\"journal\":{\"name\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v19i1.27525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v19i1.27525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

程序性内容生成(PCG)的研究最近预示了两种主要的方法:机器学习(PCGML)和声明性编程。前者通过数据中的潜在模式自动化了质量标准的规范,而后者为作者控制提供了显著的优势。在本文中,我们建议使用概率逻辑作为结合两种方法优点的统一框架。我们提出了内容生成器的贝叶斯形式化作为概率分布,并展示了常见的PCG任务如何自然地映射到分布上的操作。此外,通过迷宫生成的一系列实验,我们展示了概率逻辑语义如何允许我们利用声明性编程的作者控制和从数据中学习的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Logic Programming Semantics For Procedural Content Generation
Research in procedural content generation (PCG) has recently heralded two major methodologies: machine learning (PCGML) and declarative programming. The former shows promise by automating the specification of quality criteria through latent patterns in data, while the latter offers significant advantages for authorial control. In this paper we propose the use of probabilistic logic as a unifying framework that combines the benefits of both methodologies. We propose a Bayesian formalization of content generators as probability distributions and show how common PCG tasks map naturally to operations on the distribution. Further, through a series of experiments with maze generation, we demonstrate how probabilistic logic semantics allows us to leverage the authorial control of declarative programming and the flexibility of learning from data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信