基于树的重构分区:一种新的低数据级生成方法

Emily Halina, Matthew Guzdial
{"title":"基于树的重构分区:一种新的低数据级生成方法","authors":"Emily Halina, Matthew Guzdial","doi":"10.1609/aiide.v19i1.27520","DOIUrl":null,"url":null,"abstract":"Procedural Content Generation (PCG) is the algorithmic generation of content, often applied to games. PCG and PCG via Machine Learning (PCGML) have appeared in published games. However, it can prove difficult to apply these approaches in the early stages of an in-development game. PCG requires expertise in representing designer notions of quality in rules or functions, and PCGML typically requires significant training data, which may not be available early in development. In this paper, we introduce Tree-based Reconstructive Partitioning (TRP), a novel PCGML approach aimed to address this problem. Our results, across two domains, demonstrate that TRP produces levels that are more playable and coherent, and that the approach is more generalizable with less training data. We consider TRP to be a promising new approach that can afford the introduction of PCGML into the early stages of game development without requiring human expertise or significant training data.","PeriodicalId":498041,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tree-Based Reconstructive Partitioning: A Novel Low-Data Level Generation Approach\",\"authors\":\"Emily Halina, Matthew Guzdial\",\"doi\":\"10.1609/aiide.v19i1.27520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Procedural Content Generation (PCG) is the algorithmic generation of content, often applied to games. PCG and PCG via Machine Learning (PCGML) have appeared in published games. However, it can prove difficult to apply these approaches in the early stages of an in-development game. PCG requires expertise in representing designer notions of quality in rules or functions, and PCGML typically requires significant training data, which may not be available early in development. In this paper, we introduce Tree-based Reconstructive Partitioning (TRP), a novel PCGML approach aimed to address this problem. Our results, across two domains, demonstrate that TRP produces levels that are more playable and coherent, and that the approach is more generalizable with less training data. We consider TRP to be a promising new approach that can afford the introduction of PCGML into the early stages of game development without requiring human expertise or significant training data.\",\"PeriodicalId\":498041,\"journal\":{\"name\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v19i1.27520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v19i1.27520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

程序内容生成(PCG)是内容的算法生成,通常应用于游戏中。PCG和通过机器学习的PCG (PCGML)已经出现在已发行的游戏中。然而,在游戏开发的早期阶段很难运用这些方法。PCG需要在规则或功能中表示设计者的质量概念方面的专业知识,而PCGML通常需要重要的训练数据,这些数据在开发早期可能无法获得。在本文中,我们介绍了基于树的重构分区(TRP),一种新的PCGML方法,旨在解决这个问题。我们在两个领域的研究结果表明,TRP产生的关卡更具可玩性和连贯性,并且该方法在训练数据较少的情况下更具通用性。我们认为TRP是一种很有前途的新方法,可以在不需要人类专业知识或大量训练数据的情况下将PCGML引入游戏开发的早期阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tree-Based Reconstructive Partitioning: A Novel Low-Data Level Generation Approach
Procedural Content Generation (PCG) is the algorithmic generation of content, often applied to games. PCG and PCG via Machine Learning (PCGML) have appeared in published games. However, it can prove difficult to apply these approaches in the early stages of an in-development game. PCG requires expertise in representing designer notions of quality in rules or functions, and PCGML typically requires significant training data, which may not be available early in development. In this paper, we introduce Tree-based Reconstructive Partitioning (TRP), a novel PCGML approach aimed to address this problem. Our results, across two domains, demonstrate that TRP produces levels that are more playable and coherent, and that the approach is more generalizable with less training data. We consider TRP to be a promising new approach that can afford the introduction of PCGML into the early stages of game development without requiring human expertise or significant training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信