通过关卡绘制重建现有关卡

Johor Jara Gonzalez, Matthew Guzdial
{"title":"通过关卡绘制重建现有关卡","authors":"Johor Jara Gonzalez, Matthew Guzdial","doi":"10.1609/aiide.v19i1.27523","DOIUrl":null,"url":null,"abstract":"Procedural Content Generation (PCG) and Procedural Content Generation via Machine Learning (PCGML) have been used in prior work for generating levels in various games. This paper introduces Content Augmentation and focuses on the subproblem of level inpainting, which involves reconstructing and extending video game levels. Drawing inspiration from image inpainting, we adapt two techniques from this domain to address our specific use case. We present two approaches for level inpainting: an Autoencoder and a U-net. Through a comprehensive case study, we demonstrate their superior performance compared to a baseline method and discuss their relative merits. Furthermore, we provide a practical demonstration of both approaches for the level inpainting task and offer insights into potential directions for future research.","PeriodicalId":498041,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstructing Existing Levels through Level Inpainting\",\"authors\":\"Johor Jara Gonzalez, Matthew Guzdial\",\"doi\":\"10.1609/aiide.v19i1.27523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Procedural Content Generation (PCG) and Procedural Content Generation via Machine Learning (PCGML) have been used in prior work for generating levels in various games. This paper introduces Content Augmentation and focuses on the subproblem of level inpainting, which involves reconstructing and extending video game levels. Drawing inspiration from image inpainting, we adapt two techniques from this domain to address our specific use case. We present two approaches for level inpainting: an Autoencoder and a U-net. Through a comprehensive case study, we demonstrate their superior performance compared to a baseline method and discuss their relative merits. Furthermore, we provide a practical demonstration of both approaches for the level inpainting task and offer insights into potential directions for future research.\",\"PeriodicalId\":498041,\"journal\":{\"name\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v19i1.27523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v19i1.27523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

程序内容生成(PCG)和通过机器学习生成程序内容(PCGML)在之前的工作中用于生成各种游戏中的关卡。本文介绍了内容增强,重点研究了图像绘制中的关卡子问题,该子问题涉及到视频游戏关卡的重构和扩展。从图像绘画中汲取灵感,我们采用该领域的两种技术来解决我们的特定用例。我们提出了两种用于关卡绘制的方法:一个自动编码器和一个U-net。通过全面的案例研究,我们证明了它们与基线方法相比的优越性能,并讨论了它们的相对优点。此外,我们还提供了两种方法的实际演示,并为未来的研究提供了潜在的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstructing Existing Levels through Level Inpainting
Procedural Content Generation (PCG) and Procedural Content Generation via Machine Learning (PCGML) have been used in prior work for generating levels in various games. This paper introduces Content Augmentation and focuses on the subproblem of level inpainting, which involves reconstructing and extending video game levels. Drawing inspiration from image inpainting, we adapt two techniques from this domain to address our specific use case. We present two approaches for level inpainting: an Autoencoder and a U-net. Through a comprehensive case study, we demonstrate their superior performance compared to a baseline method and discuss their relative merits. Furthermore, we provide a practical demonstration of both approaches for the level inpainting task and offer insights into potential directions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信