非线性偏微分方程流的拟不变性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jorg-Uwe Lobus
{"title":"非线性偏微分方程流的拟不变性","authors":"Jorg-Uwe Lobus","doi":"10.1142/s0219530523500264","DOIUrl":null,"url":null,"abstract":"The paper is concerned with the change of probability measures [Formula: see text] along non-random probability measure-valued trajectories [Formula: see text], [Formula: see text]. Typically solutions to non-linear partial differential equations (PDEs), modeling spatial development as time progresses, generate such trajectories. Depending on in which direction the map [Formula: see text] does not exit the state space, for [Formula: see text] or for [Formula: see text], the Radon–Nikodym derivative [Formula: see text] is determined. It is also investigated how Fréchet differentiability of the solution map of the PDE can contribute to the existence of this Radon–Nikodym derivative. The first application is a certain Boltzmann type equation. Here, the Fréchet derivative of the solution map is calculated explicitly and quasi-invariance is established. The second application is a PDE related to the asymptotic behavior of a Fleming–Viot type particle system. Here, it is demonstrated how quasi-invariance can be used in order to derive a corresponding integration by parts formula.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quasi-Invariance under Flows Generated by Non-Linear PDEs\",\"authors\":\"Jorg-Uwe Lobus\",\"doi\":\"10.1142/s0219530523500264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with the change of probability measures [Formula: see text] along non-random probability measure-valued trajectories [Formula: see text], [Formula: see text]. Typically solutions to non-linear partial differential equations (PDEs), modeling spatial development as time progresses, generate such trajectories. Depending on in which direction the map [Formula: see text] does not exit the state space, for [Formula: see text] or for [Formula: see text], the Radon–Nikodym derivative [Formula: see text] is determined. It is also investigated how Fréchet differentiability of the solution map of the PDE can contribute to the existence of this Radon–Nikodym derivative. The first application is a certain Boltzmann type equation. Here, the Fréchet derivative of the solution map is calculated explicitly and quasi-invariance is established. The second application is a PDE related to the asymptotic behavior of a Fleming–Viot type particle system. Here, it is demonstrated how quasi-invariance can be used in order to derive a corresponding integration by parts formula.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530523500264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219530523500264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

本文关注的是概率测度[公式:见文]沿非随机概率测度值轨迹的变化[公式:见文],[公式:见文]。非线性偏微分方程(PDEs)的典型解,随着时间的推移建模空间发展,产生这样的轨迹。取决于地图[公式:见文]不退出状态空间的方向,对于[公式:见文]或[公式:见文],Radon-Nikodym导数[公式:见文]是确定的。本文还研究了PDE解图的fr微导性如何有助于Radon-Nikodym导数的存在。第一个应用是某个玻尔兹曼型方程。在此,显式地计算了解映射的frsamchet导数,并建立了拟不变性。第二个应用是关于弗莱明-维奥型粒子系统渐近行为的偏微分方程。这里演示了如何使用拟不变性来推导相应的分部积分公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Invariance under Flows Generated by Non-Linear PDEs
The paper is concerned with the change of probability measures [Formula: see text] along non-random probability measure-valued trajectories [Formula: see text], [Formula: see text]. Typically solutions to non-linear partial differential equations (PDEs), modeling spatial development as time progresses, generate such trajectories. Depending on in which direction the map [Formula: see text] does not exit the state space, for [Formula: see text] or for [Formula: see text], the Radon–Nikodym derivative [Formula: see text] is determined. It is also investigated how Fréchet differentiability of the solution map of the PDE can contribute to the existence of this Radon–Nikodym derivative. The first application is a certain Boltzmann type equation. Here, the Fréchet derivative of the solution map is calculated explicitly and quasi-invariance is established. The second application is a PDE related to the asymptotic behavior of a Fleming–Viot type particle system. Here, it is demonstrated how quasi-invariance can be used in order to derive a corresponding integration by parts formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信