从最可能的过渡轨迹数据中识别随机控制方程

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Jian Ren, Jinqiao Duan
{"title":"从最可能的过渡轨迹数据中识别随机控制方程","authors":"Jian Ren, Jinqiao Duan","doi":"10.1142/s0219493723400105","DOIUrl":null,"url":null,"abstract":"Extracting governing stochastic differential equation models from elusive data is crucial to understand and forecast dynamics for complex systems. We devise a method to extract the drift term and estimate the diffusion coefficient of a governing stochastic dynamical system, from its time-series data of the most probable transition trajectory. By the Onsager-Machlup theory, the most probable transition trajectory satisfies the corresponding Euler-Lagrange equation, which is a second order deterministic ordinary differential equation involving the drift term and diffusion coefficient. We first estimate the coefficients of the Euler-Lagrange equation based on the data of the most probable trajectory, and then we calculate the drift and diffusion coefficients of the governing stochastic dynamical system. These two steps involve sparse regression and optimization. Finally, we illustrate our method with an example and some discussions.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identifying stochastic governing equations from data of the most probable transition trajectories\",\"authors\":\"Jian Ren, Jinqiao Duan\",\"doi\":\"10.1142/s0219493723400105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting governing stochastic differential equation models from elusive data is crucial to understand and forecast dynamics for complex systems. We devise a method to extract the drift term and estimate the diffusion coefficient of a governing stochastic dynamical system, from its time-series data of the most probable transition trajectory. By the Onsager-Machlup theory, the most probable transition trajectory satisfies the corresponding Euler-Lagrange equation, which is a second order deterministic ordinary differential equation involving the drift term and diffusion coefficient. We first estimate the coefficients of the Euler-Lagrange equation based on the data of the most probable trajectory, and then we calculate the drift and diffusion coefficients of the governing stochastic dynamical system. These two steps involve sparse regression and optimization. Finally, we illustrate our method with an example and some discussions.\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493723400105\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219493723400105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

从难以捉摸的数据中提取控制随机微分方程模型对于理解和预测复杂系统的动力学是至关重要的。我们设计了一种从控制随机动力系统的最可能转移轨迹的时间序列数据中提取漂移项和估计扩散系数的方法。根据Onsager-Machlup理论,最可能的跃迁轨迹满足相应的Euler-Lagrange方程,该方程是包含漂移项和扩散系数的二阶确定性常微分方程。首先根据最可能轨迹的数据估计欧拉-拉格朗日方程的系数,然后计算控制随机动力系统的漂移系数和扩散系数。这两个步骤涉及稀疏回归和优化。最后,我们用一个例子和一些讨论来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying stochastic governing equations from data of the most probable transition trajectories
Extracting governing stochastic differential equation models from elusive data is crucial to understand and forecast dynamics for complex systems. We devise a method to extract the drift term and estimate the diffusion coefficient of a governing stochastic dynamical system, from its time-series data of the most probable transition trajectory. By the Onsager-Machlup theory, the most probable transition trajectory satisfies the corresponding Euler-Lagrange equation, which is a second order deterministic ordinary differential equation involving the drift term and diffusion coefficient. We first estimate the coefficients of the Euler-Lagrange equation based on the data of the most probable trajectory, and then we calculate the drift and diffusion coefficients of the governing stochastic dynamical system. These two steps involve sparse regression and optimization. Finally, we illustrate our method with an example and some discussions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信