{"title":"基于接触的反应-亚扩散模型I:表面吸附和局部时间传播子","authors":"Paul C Bressloff","doi":"10.1088/1751-8121/acfcf3","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we develop an encounter-based model of partial surface adsorption for fractional diffusion in a bounded domain. We take the probability of adsorption to depend on the amount of particle-surface contact time, as specified by a Brownian functional known as the boundary local time <?CDATA $\\ell(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> . If the rate of adsorption is state dependent, then the adsorption process is non-Markovian, reflecting the fact that surface activation/deactivation proceeds progressively by repeated particle encounters. The generalized adsorption event is identified as the first time that the local time crosses a randomly generated threshold. Different models of adsorption (Markovian and non-Markovian) then correspond to different choices for the random threshold probability density <?CDATA $\\psi(\\ell)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> . The marginal probability density for particle position <?CDATA $\\mathbf{X}(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mi mathvariant=\"bold\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> prior to absorption depends on ψ and the joint probability density for the pair <?CDATA $(\\mathbf{X}(t),\\ell(t))$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"bold\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> , also known as the local time propagator. In the case of normal diffusion one can use a Feynman–Kac formula to derive an evolution equation for the propagator. Here we derive the local time propagator equation for fractional diffusion by taking a continuum limit of a heavy-tailed continuous-time random walk (CTRW). We begin by considering a CTRW on a one-dimensional lattice with a reflecting boundary at n = 0. We derive an evolution equation for the joint probability density of the particle location <?CDATA $N(t)\\in \\{n\\in {\\mathbb{Z}},n\\unicode{x2A7E} 0\\}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>0</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:math> and the amount of time <?CDATA $\\chi(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> spent at the origin. The continuum limit involves rescaling <?CDATA $\\chi(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> by a factor <?CDATA $1/\\Delta x$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>x</mml:mi> </mml:math> , where <?CDATA $\\Delta x$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>x</mml:mi> </mml:math> is the lattice spacing. In the limit <?CDATA $\\Delta x \\rightarrow 0$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mn>0</mml:mn> </mml:math> , the rescaled functional <?CDATA $\\chi(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> becomes the Brownian local time at x = 0. We use our encounter-based model to investigate the effects of subdiffusion and non-Markovian adsorption on the long-time behavior of the first passage time (FPT) density in a finite interval <?CDATA $[0,L]$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> </mml:math> with a reflecting boundary at x = L . In particular, we determine how the choice of function ψ affects the large- t power law decay of the FPT density. Finally, we indicate how to extend the model to higher spatial dimensions.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Encounter-based reaction-subdiffusion model I: surface adsorption and the local time propagator\",\"authors\":\"Paul C Bressloff\",\"doi\":\"10.1088/1751-8121/acfcf3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we develop an encounter-based model of partial surface adsorption for fractional diffusion in a bounded domain. We take the probability of adsorption to depend on the amount of particle-surface contact time, as specified by a Brownian functional known as the boundary local time <?CDATA $\\\\ell(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> . If the rate of adsorption is state dependent, then the adsorption process is non-Markovian, reflecting the fact that surface activation/deactivation proceeds progressively by repeated particle encounters. The generalized adsorption event is identified as the first time that the local time crosses a randomly generated threshold. Different models of adsorption (Markovian and non-Markovian) then correspond to different choices for the random threshold probability density <?CDATA $\\\\psi(\\\\ell)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> . The marginal probability density for particle position <?CDATA $\\\\mathbf{X}(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> prior to absorption depends on ψ and the joint probability density for the pair <?CDATA $(\\\\mathbf{X}(t),\\\\ell(t))$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> , also known as the local time propagator. In the case of normal diffusion one can use a Feynman–Kac formula to derive an evolution equation for the propagator. Here we derive the local time propagator equation for fractional diffusion by taking a continuum limit of a heavy-tailed continuous-time random walk (CTRW). We begin by considering a CTRW on a one-dimensional lattice with a reflecting boundary at n = 0. We derive an evolution equation for the joint probability density of the particle location <?CDATA $N(t)\\\\in \\\\{n\\\\in {\\\\mathbb{Z}},n\\\\unicode{x2A7E} 0\\\\}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>N</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>0</mml:mn> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:math> and the amount of time <?CDATA $\\\\chi(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> spent at the origin. The continuum limit involves rescaling <?CDATA $\\\\chi(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> by a factor <?CDATA $1/\\\\Delta x$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mi>x</mml:mi> </mml:math> , where <?CDATA $\\\\Delta x$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mi>x</mml:mi> </mml:math> is the lattice spacing. In the limit <?CDATA $\\\\Delta x \\\\rightarrow 0$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:mn>0</mml:mn> </mml:math> , the rescaled functional <?CDATA $\\\\chi(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> becomes the Brownian local time at x = 0. We use our encounter-based model to investigate the effects of subdiffusion and non-Markovian adsorption on the long-time behavior of the first passage time (FPT) density in a finite interval <?CDATA $[0,L]$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:math> with a reflecting boundary at x = L . In particular, we determine how the choice of function ψ affects the large- t power law decay of the FPT density. Finally, we indicate how to extend the model to higher spatial dimensions.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"2018 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfcf3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfcf3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Encounter-based reaction-subdiffusion model I: surface adsorption and the local time propagator
Abstract In this paper, we develop an encounter-based model of partial surface adsorption for fractional diffusion in a bounded domain. We take the probability of adsorption to depend on the amount of particle-surface contact time, as specified by a Brownian functional known as the boundary local time ℓ(t) . If the rate of adsorption is state dependent, then the adsorption process is non-Markovian, reflecting the fact that surface activation/deactivation proceeds progressively by repeated particle encounters. The generalized adsorption event is identified as the first time that the local time crosses a randomly generated threshold. Different models of adsorption (Markovian and non-Markovian) then correspond to different choices for the random threshold probability density ψ(ℓ) . The marginal probability density for particle position X(t) prior to absorption depends on ψ and the joint probability density for the pair (X(t),ℓ(t)) , also known as the local time propagator. In the case of normal diffusion one can use a Feynman–Kac formula to derive an evolution equation for the propagator. Here we derive the local time propagator equation for fractional diffusion by taking a continuum limit of a heavy-tailed continuous-time random walk (CTRW). We begin by considering a CTRW on a one-dimensional lattice with a reflecting boundary at n = 0. We derive an evolution equation for the joint probability density of the particle location N(t)∈{n∈Z,n⩾0} and the amount of time χ(t) spent at the origin. The continuum limit involves rescaling χ(t) by a factor 1/Δx , where Δx is the lattice spacing. In the limit Δx→0 , the rescaled functional χ(t) becomes the Brownian local time at x = 0. We use our encounter-based model to investigate the effects of subdiffusion and non-Markovian adsorption on the long-time behavior of the first passage time (FPT) density in a finite interval [0,L] with a reflecting boundary at x = L . In particular, we determine how the choice of function ψ affects the large- t power law decay of the FPT density. Finally, we indicate how to extend the model to higher spatial dimensions.