基于接触的反应-亚扩散模型I:表面吸附和局部时间传播子

Paul C Bressloff
{"title":"基于接触的反应-亚扩散模型I:表面吸附和局部时间传播子","authors":"Paul C Bressloff","doi":"10.1088/1751-8121/acfcf3","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we develop an encounter-based model of partial surface adsorption for fractional diffusion in a bounded domain. We take the probability of adsorption to depend on the amount of particle-surface contact time, as specified by a Brownian functional known as the boundary local time <?CDATA $\\ell(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> . If the rate of adsorption is state dependent, then the adsorption process is non-Markovian, reflecting the fact that surface activation/deactivation proceeds progressively by repeated particle encounters. The generalized adsorption event is identified as the first time that the local time crosses a randomly generated threshold. Different models of adsorption (Markovian and non-Markovian) then correspond to different choices for the random threshold probability density <?CDATA $\\psi(\\ell)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> . The marginal probability density for particle position <?CDATA $\\mathbf{X}(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mi mathvariant=\"bold\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> prior to absorption depends on ψ and the joint probability density for the pair <?CDATA $(\\mathbf{X}(t),\\ell(t))$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"bold\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> , also known as the local time propagator. In the case of normal diffusion one can use a Feynman–Kac formula to derive an evolution equation for the propagator. Here we derive the local time propagator equation for fractional diffusion by taking a continuum limit of a heavy-tailed continuous-time random walk (CTRW). We begin by considering a CTRW on a one-dimensional lattice with a reflecting boundary at n = 0. We derive an evolution equation for the joint probability density of the particle location <?CDATA $N(t)\\in \\{n\\in {\\mathbb{Z}},n\\unicode{x2A7E} 0\\}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>0</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:math> and the amount of time <?CDATA $\\chi(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> spent at the origin. The continuum limit involves rescaling <?CDATA $\\chi(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> by a factor <?CDATA $1/\\Delta x$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>x</mml:mi> </mml:math> , where <?CDATA $\\Delta x$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>x</mml:mi> </mml:math> is the lattice spacing. In the limit <?CDATA $\\Delta x \\rightarrow 0$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"normal\">Δ</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mn>0</mml:mn> </mml:math> , the rescaled functional <?CDATA $\\chi(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> becomes the Brownian local time at x = 0. We use our encounter-based model to investigate the effects of subdiffusion and non-Markovian adsorption on the long-time behavior of the first passage time (FPT) density in a finite interval <?CDATA $[0,L]$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> </mml:math> with a reflecting boundary at x = L . In particular, we determine how the choice of function ψ affects the large- t power law decay of the FPT density. Finally, we indicate how to extend the model to higher spatial dimensions.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Encounter-based reaction-subdiffusion model I: surface adsorption and the local time propagator\",\"authors\":\"Paul C Bressloff\",\"doi\":\"10.1088/1751-8121/acfcf3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we develop an encounter-based model of partial surface adsorption for fractional diffusion in a bounded domain. We take the probability of adsorption to depend on the amount of particle-surface contact time, as specified by a Brownian functional known as the boundary local time <?CDATA $\\\\ell(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> . If the rate of adsorption is state dependent, then the adsorption process is non-Markovian, reflecting the fact that surface activation/deactivation proceeds progressively by repeated particle encounters. The generalized adsorption event is identified as the first time that the local time crosses a randomly generated threshold. Different models of adsorption (Markovian and non-Markovian) then correspond to different choices for the random threshold probability density <?CDATA $\\\\psi(\\\\ell)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> . The marginal probability density for particle position <?CDATA $\\\\mathbf{X}(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> prior to absorption depends on ψ and the joint probability density for the pair <?CDATA $(\\\\mathbf{X}(t),\\\\ell(t))$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>ℓ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> , also known as the local time propagator. In the case of normal diffusion one can use a Feynman–Kac formula to derive an evolution equation for the propagator. Here we derive the local time propagator equation for fractional diffusion by taking a continuum limit of a heavy-tailed continuous-time random walk (CTRW). We begin by considering a CTRW on a one-dimensional lattice with a reflecting boundary at n = 0. We derive an evolution equation for the joint probability density of the particle location <?CDATA $N(t)\\\\in \\\\{n\\\\in {\\\\mathbb{Z}},n\\\\unicode{x2A7E} 0\\\\}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>N</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>0</mml:mn> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:math> and the amount of time <?CDATA $\\\\chi(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> spent at the origin. The continuum limit involves rescaling <?CDATA $\\\\chi(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> by a factor <?CDATA $1/\\\\Delta x$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mi>x</mml:mi> </mml:math> , where <?CDATA $\\\\Delta x$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mi>x</mml:mi> </mml:math> is the lattice spacing. In the limit <?CDATA $\\\\Delta x \\\\rightarrow 0$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:mn>0</mml:mn> </mml:math> , the rescaled functional <?CDATA $\\\\chi(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>χ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> becomes the Brownian local time at x = 0. We use our encounter-based model to investigate the effects of subdiffusion and non-Markovian adsorption on the long-time behavior of the first passage time (FPT) density in a finite interval <?CDATA $[0,L]$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:math> with a reflecting boundary at x = L . In particular, we determine how the choice of function ψ affects the large- t power law decay of the FPT density. Finally, we indicate how to extend the model to higher spatial dimensions.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"2018 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfcf3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfcf3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要在本文中,我们建立了一个基于相遇的有界区域分数扩散的部分表面吸附模型。我们将吸附的概率取决于粒子表面接触时间的数量,这是由称为边界局部时间的布朗泛函指定的。如果吸附速率依赖于状态,那么吸附过程是非马尔可夫的,这反映了表面活化/失活通过重复的颗粒接触逐步进行的事实。广义吸附事件被确定为本地时间第一次越过随机生成的阈值。不同的吸附模型(马尔可夫模型和非马尔可夫模型)对应于随机阈值概率密度ψ (r)的不同选择。吸收前粒子位置X (t)的边际概率密度取决于ψ和粒子对(X (t), r (t))的联合概率密度,也称为局部时间传播子。在正常扩散的情况下,可以用费曼-卡茨公式推导出传播子的演化方程。本文通过取重尾连续时间随机漫步(CTRW)的连续极限,导出分数阶扩散的局部时间传播方程。我们首先考虑一维晶格上的CTRW,其反射边界为n = 0。我们推导了粒子位置N (t)∈{N∈Z, N大于或等于0}的联合概率密度和在原点花费的时间χ (t)的演化方程。连续体极限涉及通过因子1 / Δ x重新缩放χ (t),其中Δ x是晶格间距。在极限Δ x→0时,重新标度的泛函χ (t)成为x = 0时的布朗局部时间。我们使用基于相遇的模型研究了亚扩散和非马尔可夫吸附对有限区间内首次通过时间(FPT)密度长时间行为的影响,反射边界为x = L。特别地,我们确定了函数ψ的选择如何影响FPT密度的大t幂律衰减。最后,我们指出了如何将模型扩展到更高的空间维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encounter-based reaction-subdiffusion model I: surface adsorption and the local time propagator
Abstract In this paper, we develop an encounter-based model of partial surface adsorption for fractional diffusion in a bounded domain. We take the probability of adsorption to depend on the amount of particle-surface contact time, as specified by a Brownian functional known as the boundary local time ( t ) . If the rate of adsorption is state dependent, then the adsorption process is non-Markovian, reflecting the fact that surface activation/deactivation proceeds progressively by repeated particle encounters. The generalized adsorption event is identified as the first time that the local time crosses a randomly generated threshold. Different models of adsorption (Markovian and non-Markovian) then correspond to different choices for the random threshold probability density ψ ( ) . The marginal probability density for particle position X ( t ) prior to absorption depends on ψ and the joint probability density for the pair ( X ( t ) , ( t ) ) , also known as the local time propagator. In the case of normal diffusion one can use a Feynman–Kac formula to derive an evolution equation for the propagator. Here we derive the local time propagator equation for fractional diffusion by taking a continuum limit of a heavy-tailed continuous-time random walk (CTRW). We begin by considering a CTRW on a one-dimensional lattice with a reflecting boundary at n = 0. We derive an evolution equation for the joint probability density of the particle location N ( t ) { n Z , n 0 } and the amount of time χ ( t ) spent at the origin. The continuum limit involves rescaling χ ( t ) by a factor 1 / Δ x , where Δ x is the lattice spacing. In the limit Δ x 0 , the rescaled functional χ ( t ) becomes the Brownian local time at x = 0. We use our encounter-based model to investigate the effects of subdiffusion and non-Markovian adsorption on the long-time behavior of the first passage time (FPT) density in a finite interval [ 0 , L ] with a reflecting boundary at x = L . In particular, we determine how the choice of function ψ affects the large- t power law decay of the FPT density. Finally, we indicate how to extend the model to higher spatial dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信