{"title":"基于相遇的反应-亚扩散模型II:部分吸收陷阱和占用时间传播器","authors":"Paul C Bressloff","doi":"10.1088/1751-8121/acfcf4","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we develop an encounter-based model of reaction-subdiffusion in a domain Ω with a partially absorbing interior trap <?CDATA ${\\mathcal U}\\subset \\Omega$?> . We assume that the particle can freely enter and exit <?CDATA ${\\mathcal U}$?> , but is only absorbed within <?CDATA ${\\mathcal U}$?> . We take the probability of absorption to depend on the amount of time a particle spends within the trap, which is specified by a Brownian functional known as the occupation time A ( t ). The first passage time (FPT) for absorption is identified with the point at which the occupation time crosses a random threshold <?CDATA $\\widehat{A}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>ˆ</mml:mo> </mml:mover> </mml:math> with probability density <?CDATA $\\psi(a)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> . Non-Markovian models of absorption can then be incorporated by taking <?CDATA $\\psi(a)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> to be non-exponential. The marginal probability density for particle position <?CDATA $\\mathbf{X}(t)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mi mathvariant=\"bold\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> prior to absorption depends on ψ and the joint probability density for the pair <?CDATA $(\\mathbf{X}(t),A(t))$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\"bold\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> , also known as the occupation time propagator. In the case of normal diffusion one can use a Feynman–Kac formula to derive an evolution equation for the propagator. However, care must be taken when combining fractional diffusion with chemical reactions in the same medium. Therefore, we derive the occupation time propagator equation from first principles by taking the continuum limit of a heavy-tailed continuous-time random walk. We then use the solution of the propagator equation to investigate conditions under which the mean FPT for absorption within a trap is finite. We show that this depends on the choice of threshold density <?CDATA $\\psi(a)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> and the subdiffusivity. Hence, as previously found for evanescent reaction-subdiffusion models, the processes of subdiffusion and absorption are intermingled.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Encounter-based reaction-subdiffusion model II: partially absorbing traps and the occupation time propagator\",\"authors\":\"Paul C Bressloff\",\"doi\":\"10.1088/1751-8121/acfcf4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we develop an encounter-based model of reaction-subdiffusion in a domain Ω with a partially absorbing interior trap <?CDATA ${\\\\mathcal U}\\\\subset \\\\Omega$?> . We assume that the particle can freely enter and exit <?CDATA ${\\\\mathcal U}$?> , but is only absorbed within <?CDATA ${\\\\mathcal U}$?> . We take the probability of absorption to depend on the amount of time a particle spends within the trap, which is specified by a Brownian functional known as the occupation time A ( t ). The first passage time (FPT) for absorption is identified with the point at which the occupation time crosses a random threshold <?CDATA $\\\\widehat{A}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>ˆ</mml:mo> </mml:mover> </mml:math> with probability density <?CDATA $\\\\psi(a)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> . Non-Markovian models of absorption can then be incorporated by taking <?CDATA $\\\\psi(a)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> to be non-exponential. The marginal probability density for particle position <?CDATA $\\\\mathbf{X}(t)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> prior to absorption depends on ψ and the joint probability density for the pair <?CDATA $(\\\\mathbf{X}(t),A(t))$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">X</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> , also known as the occupation time propagator. In the case of normal diffusion one can use a Feynman–Kac formula to derive an evolution equation for the propagator. However, care must be taken when combining fractional diffusion with chemical reactions in the same medium. Therefore, we derive the occupation time propagator equation from first principles by taking the continuum limit of a heavy-tailed continuous-time random walk. We then use the solution of the propagator equation to investigate conditions under which the mean FPT for absorption within a trap is finite. We show that this depends on the choice of threshold density <?CDATA $\\\\psi(a)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>ψ</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> and the subdiffusivity. Hence, as previously found for evanescent reaction-subdiffusion models, the processes of subdiffusion and absorption are intermingled.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfcf4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfcf4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
摘要在本文中,我们建立了一个基于相遇的反应-亚扩散模型,该模型在具有部分吸收的内部陷阱的Ω域中。我们假设粒子可以自由进出,但只在内部被吸收。我们认为吸收的概率取决于粒子在阱内停留的时间,这是由称为占用时间a (t)的布朗泛函指定的。吸收的第一次通过时间(FPT)被识别为占据时间超过随机阈值a的点,其概率密度为ψ (a)。非马尔可夫吸收模型可以通过取ψ (a)为非指数来合并。吸收前粒子位置X (t)的边际概率密度取决于ψ和粒子对(X (t), A (t))的联合概率密度,也称为占用时间传播子。在正常扩散的情况下,可以用费曼-卡茨公式推导出传播子的演化方程。然而,当在同一介质中结合分式扩散和化学反应时,必须小心。因此,我们从第一性原理出发,通过取重尾连续时间随机漫步的连续极限,导出了占用时间传播方程。然后,我们使用传播方程的解来研究陷阱内吸收的平均FPT是有限的条件。我们证明这取决于阈值密度ψ (a)和次扩散率的选择。因此,正如先前在消失的反应-亚扩散模型中发现的那样,亚扩散过程和吸收过程是混合的。
Encounter-based reaction-subdiffusion model II: partially absorbing traps and the occupation time propagator
Abstract In this paper we develop an encounter-based model of reaction-subdiffusion in a domain Ω with a partially absorbing interior trap . We assume that the particle can freely enter and exit , but is only absorbed within . We take the probability of absorption to depend on the amount of time a particle spends within the trap, which is specified by a Brownian functional known as the occupation time A ( t ). The first passage time (FPT) for absorption is identified with the point at which the occupation time crosses a random threshold Aˆ with probability density ψ(a) . Non-Markovian models of absorption can then be incorporated by taking ψ(a) to be non-exponential. The marginal probability density for particle position X(t) prior to absorption depends on ψ and the joint probability density for the pair (X(t),A(t)) , also known as the occupation time propagator. In the case of normal diffusion one can use a Feynman–Kac formula to derive an evolution equation for the propagator. However, care must be taken when combining fractional diffusion with chemical reactions in the same medium. Therefore, we derive the occupation time propagator equation from first principles by taking the continuum limit of a heavy-tailed continuous-time random walk. We then use the solution of the propagator equation to investigate conditions under which the mean FPT for absorption within a trap is finite. We show that this depends on the choice of threshold density ψ(a) and the subdiffusivity. Hence, as previously found for evanescent reaction-subdiffusion models, the processes of subdiffusion and absorption are intermingled.