不变测度的大偏差极限

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Anatolii A. Puhalskii
{"title":"不变测度的大偏差极限","authors":"Anatolii A. Puhalskii","doi":"10.1142/s0219493723500521","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the general theme of relating the Large Deviation Principle (LDP) for the invariant measures of stochastic processes to the associated sample path LDP. It is shown that if the sample path deviation function possesses certain structure and the invariant measures are exponentially tight, then the LDP for the invariant measures is implied by the sample path LDP, no other properties of the stochastic processes in question being material. As an application, we obtain an LDP for the stationary distributions of jump diffusions. Methods of large deviation convergence and idempotent probability play an integral part.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":"27 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Large deviation limits of invariant measures\",\"authors\":\"Anatolii A. Puhalskii\",\"doi\":\"10.1142/s0219493723500521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the general theme of relating the Large Deviation Principle (LDP) for the invariant measures of stochastic processes to the associated sample path LDP. It is shown that if the sample path deviation function possesses certain structure and the invariant measures are exponentially tight, then the LDP for the invariant measures is implied by the sample path LDP, no other properties of the stochastic processes in question being material. As an application, we obtain an LDP for the stationary distributions of jump diffusions. Methods of large deviation convergence and idempotent probability play an integral part.\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493723500521\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219493723500521","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了随机过程不变测度的大偏差原理与相关样本路径的大偏差原理之间的关系。结果表明,如果样本路径偏差函数具有一定的结构,且不变测度是指数紧的,则不变测度的LDP由样本路径LDP隐含,而随机过程的其他性质无关紧要。作为应用,我们得到了跳跃扩散平稳分布的LDP。大偏差收敛和幂等概率的方法是其中不可或缺的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large deviation limits of invariant measures
This paper is concerned with the general theme of relating the Large Deviation Principle (LDP) for the invariant measures of stochastic processes to the associated sample path LDP. It is shown that if the sample path deviation function possesses certain structure and the invariant measures are exponentially tight, then the LDP for the invariant measures is implied by the sample path LDP, no other properties of the stochastic processes in question being material. As an application, we obtain an LDP for the stationary distributions of jump diffusions. Methods of large deviation convergence and idempotent probability play an integral part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信