{"title":"基于Pixhawk的无人机系统与激光甲烷微型探测器集成研究甲烷排放","authors":"Timofey Filkin, Iliya Lipin, Natalia Sliusar","doi":"10.3390/drones7100625","DOIUrl":null,"url":null,"abstract":"This article describes the process of integrating one of the most commonly used laser methane detectors, the Laser Methane mini (LMm), and a multi-rotor unmanned aerial vehicle (UAV) based on the Pixhawk flight controller to create an unmanned aerial system designed to detect methane leakages from the air. The integration is performed via the LaserHub+, a newly developed device which receives data from the laser methane detector, decodes it and transmits it to the flight controller with the protocol used by the ArduPilot platform for laser rangefinders. The user receives a single data array from the UAV flight controller that contains both the values of the methane concentrations measured by the detector, and the co-ordinates of the corresponding measurement points in three-dimensional space. The transmission of data from the UAV is carried out in real time. It is shown in this project that the proposed technical solution (the LaserHub+) has clear advantages over not only similar serial commercial solutions (e.g., the SkyHub complex by SPH Engineering) but also experimental developments described in the scientific literature. The main reason is that LaserHub+ does not require a deep customization of the methane detector or the placement of additional complex devices on board the UAV. Tests using it were carried out in aerial gas surveys of a number of municipal solid waste disposal sites in Russia. The device has a low cost and is easy for the end user to assemble, connect to the UAV and set up. The authors believe that LaserHub+ can be recommended as a mass solution for aerial surveys of methane sources. Information is provided on the approval of LaserHub+ for aerial gas surveys of a number of Russian municipal waste disposal facilities.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"298 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating a UAV System Based on Pixhawk with a Laser Methane Mini Detector to Study Methane Emissions\",\"authors\":\"Timofey Filkin, Iliya Lipin, Natalia Sliusar\",\"doi\":\"10.3390/drones7100625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the process of integrating one of the most commonly used laser methane detectors, the Laser Methane mini (LMm), and a multi-rotor unmanned aerial vehicle (UAV) based on the Pixhawk flight controller to create an unmanned aerial system designed to detect methane leakages from the air. The integration is performed via the LaserHub+, a newly developed device which receives data from the laser methane detector, decodes it and transmits it to the flight controller with the protocol used by the ArduPilot platform for laser rangefinders. The user receives a single data array from the UAV flight controller that contains both the values of the methane concentrations measured by the detector, and the co-ordinates of the corresponding measurement points in three-dimensional space. The transmission of data from the UAV is carried out in real time. It is shown in this project that the proposed technical solution (the LaserHub+) has clear advantages over not only similar serial commercial solutions (e.g., the SkyHub complex by SPH Engineering) but also experimental developments described in the scientific literature. The main reason is that LaserHub+ does not require a deep customization of the methane detector or the placement of additional complex devices on board the UAV. Tests using it were carried out in aerial gas surveys of a number of municipal solid waste disposal sites in Russia. The device has a low cost and is easy for the end user to assemble, connect to the UAV and set up. The authors believe that LaserHub+ can be recommended as a mass solution for aerial surveys of methane sources. Information is provided on the approval of LaserHub+ for aerial gas surveys of a number of Russian municipal waste disposal facilities.\",\"PeriodicalId\":36448,\"journal\":{\"name\":\"Drones\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones7100625\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100625","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Integrating a UAV System Based on Pixhawk with a Laser Methane Mini Detector to Study Methane Emissions
This article describes the process of integrating one of the most commonly used laser methane detectors, the Laser Methane mini (LMm), and a multi-rotor unmanned aerial vehicle (UAV) based on the Pixhawk flight controller to create an unmanned aerial system designed to detect methane leakages from the air. The integration is performed via the LaserHub+, a newly developed device which receives data from the laser methane detector, decodes it and transmits it to the flight controller with the protocol used by the ArduPilot platform for laser rangefinders. The user receives a single data array from the UAV flight controller that contains both the values of the methane concentrations measured by the detector, and the co-ordinates of the corresponding measurement points in three-dimensional space. The transmission of data from the UAV is carried out in real time. It is shown in this project that the proposed technical solution (the LaserHub+) has clear advantages over not only similar serial commercial solutions (e.g., the SkyHub complex by SPH Engineering) but also experimental developments described in the scientific literature. The main reason is that LaserHub+ does not require a deep customization of the methane detector or the placement of additional complex devices on board the UAV. Tests using it were carried out in aerial gas surveys of a number of municipal solid waste disposal sites in Russia. The device has a low cost and is easy for the end user to assemble, connect to the UAV and set up. The authors believe that LaserHub+ can be recommended as a mass solution for aerial surveys of methane sources. Information is provided on the approval of LaserHub+ for aerial gas surveys of a number of Russian municipal waste disposal facilities.