{"title":"自适应神经模糊推理系统在红宝石芒果种植园路径损失预测中的应用","authors":"Supachai Phaiboon, Pisit Phokharatkul","doi":"10.3390/jsan12050071","DOIUrl":null,"url":null,"abstract":"The application of wireless sensor networks (WSNs) in smart agriculture requires accurate path loss prediction to determine the coverage area and system capacity. However, fast fading from environment changes, such as leaf movement, unsymmetrical tree structures and near-ground effects, makes the path loss prediction inaccurate. Artificial intelligence (AI) technologies can be used to facilitate this task for training the real environments. In this study, we performed path loss measurements in a Ruby mango plantation at a frequency of 433 MHz. Then, an adaptive neuro-fuzzy inference system (ANFIS) was applied to path loss prediction. The ANFIS required two inputs for the path loss prediction: the distance and antenna height corresponding to the tree level (i.e., trunk and bottom, middle, and top canopies). We evaluated the performance of the ANFIS by comparing it with empirical path loss models widely used in the literature. The ANFIS demonstrated a superior prediction accuracy with high sensitivity compared to the empirical models, although the performance was affected by the tree level.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying an Adaptive Neuro-Fuzzy Inference System to Path Loss Prediction in a Ruby Mango Plantation\",\"authors\":\"Supachai Phaiboon, Pisit Phokharatkul\",\"doi\":\"10.3390/jsan12050071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of wireless sensor networks (WSNs) in smart agriculture requires accurate path loss prediction to determine the coverage area and system capacity. However, fast fading from environment changes, such as leaf movement, unsymmetrical tree structures and near-ground effects, makes the path loss prediction inaccurate. Artificial intelligence (AI) technologies can be used to facilitate this task for training the real environments. In this study, we performed path loss measurements in a Ruby mango plantation at a frequency of 433 MHz. Then, an adaptive neuro-fuzzy inference system (ANFIS) was applied to path loss prediction. The ANFIS required two inputs for the path loss prediction: the distance and antenna height corresponding to the tree level (i.e., trunk and bottom, middle, and top canopies). We evaluated the performance of the ANFIS by comparing it with empirical path loss models widely used in the literature. The ANFIS demonstrated a superior prediction accuracy with high sensitivity compared to the empirical models, although the performance was affected by the tree level.\",\"PeriodicalId\":37584,\"journal\":{\"name\":\"Journal of Sensor and Actuator Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensor and Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan12050071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12050071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Applying an Adaptive Neuro-Fuzzy Inference System to Path Loss Prediction in a Ruby Mango Plantation
The application of wireless sensor networks (WSNs) in smart agriculture requires accurate path loss prediction to determine the coverage area and system capacity. However, fast fading from environment changes, such as leaf movement, unsymmetrical tree structures and near-ground effects, makes the path loss prediction inaccurate. Artificial intelligence (AI) technologies can be used to facilitate this task for training the real environments. In this study, we performed path loss measurements in a Ruby mango plantation at a frequency of 433 MHz. Then, an adaptive neuro-fuzzy inference system (ANFIS) was applied to path loss prediction. The ANFIS required two inputs for the path loss prediction: the distance and antenna height corresponding to the tree level (i.e., trunk and bottom, middle, and top canopies). We evaluated the performance of the ANFIS by comparing it with empirical path loss models widely used in the literature. The ANFIS demonstrated a superior prediction accuracy with high sensitivity compared to the empirical models, although the performance was affected by the tree level.
期刊介绍:
Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.