Pengcheng Zhao, Quan J. Wang, Wenyan Wu, Qichun Yang
{"title":"具有空间相关结构的降水场预报的基于空间模式的定标(SMoC):逐网格后处理的扩展评价与比较","authors":"Pengcheng Zhao, Quan J. Wang, Wenyan Wu, Qichun Yang","doi":"10.1175/jhm-d-23-0023.1","DOIUrl":null,"url":null,"abstract":"Abstract Postprocessing forecast precipitation fields from numerical weather prediction models aims to produce ensemble forecasts that are of high quality at each grid cell and, importantly, are spatially structured in an appropriate manner. A conventional approach, the gridcell-by-gridcell postprocessing, typically consists of two steps: 1) perform statistical calibration separately at individual grid cells to generate unbiased, skillful, and reliable ensemble forecasts and 2) employ ensemble reordering to link ensemble members of all grid cells according to certain templates to form spatially structured ensemble forecasts. However, ensemble reordering techniques are generally problematic in practical use. For example, the well-known Schaake shuffle is often criticized for not considering real physical atmospheric conditions. In this context, a fundamentally new approach, namely, spatial-mode-based calibration (SMoC), has recently been developed for postprocessing forecast precipitation fields with inbuilt spatial structures, thereby eliminating the need for ensemble reordering. SMoC was tested on 1-day-ahead forecasts of heavy precipitation events and was found to produce ensemble forecasts with appropriate spatial structures. In this paper, we extend SMoC to calibrate forecasts of light and no precipitation events and forecasts at long lead times. We also compare SMoC with the gridcell-by-gridcell postprocessing. Results based on multiple evaluation metrics show that SMoC performs well in calibrating both forecasts of light and no precipitation events and forecasts at long lead times. Compared with the gridcell-by-gridcell postprocessing, SMoC produces ensemble forecasts with similar forecast skill, improved forecast reliability, and clearly better spatial structures. In addition, SMoC is computationally far more efficient.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"41 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial-Mode-Based Calibration (SMoC) of Forecast Precipitation Fields with Spatially Correlated Structures: An Extended Evaluation and Comparison with Gridcell-by-Gridcell Postprocessing\",\"authors\":\"Pengcheng Zhao, Quan J. Wang, Wenyan Wu, Qichun Yang\",\"doi\":\"10.1175/jhm-d-23-0023.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Postprocessing forecast precipitation fields from numerical weather prediction models aims to produce ensemble forecasts that are of high quality at each grid cell and, importantly, are spatially structured in an appropriate manner. A conventional approach, the gridcell-by-gridcell postprocessing, typically consists of two steps: 1) perform statistical calibration separately at individual grid cells to generate unbiased, skillful, and reliable ensemble forecasts and 2) employ ensemble reordering to link ensemble members of all grid cells according to certain templates to form spatially structured ensemble forecasts. However, ensemble reordering techniques are generally problematic in practical use. For example, the well-known Schaake shuffle is often criticized for not considering real physical atmospheric conditions. In this context, a fundamentally new approach, namely, spatial-mode-based calibration (SMoC), has recently been developed for postprocessing forecast precipitation fields with inbuilt spatial structures, thereby eliminating the need for ensemble reordering. SMoC was tested on 1-day-ahead forecasts of heavy precipitation events and was found to produce ensemble forecasts with appropriate spatial structures. In this paper, we extend SMoC to calibrate forecasts of light and no precipitation events and forecasts at long lead times. We also compare SMoC with the gridcell-by-gridcell postprocessing. Results based on multiple evaluation metrics show that SMoC performs well in calibrating both forecasts of light and no precipitation events and forecasts at long lead times. Compared with the gridcell-by-gridcell postprocessing, SMoC produces ensemble forecasts with similar forecast skill, improved forecast reliability, and clearly better spatial structures. In addition, SMoC is computationally far more efficient.\",\"PeriodicalId\":15962,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-23-0023.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0023.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Spatial-Mode-Based Calibration (SMoC) of Forecast Precipitation Fields with Spatially Correlated Structures: An Extended Evaluation and Comparison with Gridcell-by-Gridcell Postprocessing
Abstract Postprocessing forecast precipitation fields from numerical weather prediction models aims to produce ensemble forecasts that are of high quality at each grid cell and, importantly, are spatially structured in an appropriate manner. A conventional approach, the gridcell-by-gridcell postprocessing, typically consists of two steps: 1) perform statistical calibration separately at individual grid cells to generate unbiased, skillful, and reliable ensemble forecasts and 2) employ ensemble reordering to link ensemble members of all grid cells according to certain templates to form spatially structured ensemble forecasts. However, ensemble reordering techniques are generally problematic in practical use. For example, the well-known Schaake shuffle is often criticized for not considering real physical atmospheric conditions. In this context, a fundamentally new approach, namely, spatial-mode-based calibration (SMoC), has recently been developed for postprocessing forecast precipitation fields with inbuilt spatial structures, thereby eliminating the need for ensemble reordering. SMoC was tested on 1-day-ahead forecasts of heavy precipitation events and was found to produce ensemble forecasts with appropriate spatial structures. In this paper, we extend SMoC to calibrate forecasts of light and no precipitation events and forecasts at long lead times. We also compare SMoC with the gridcell-by-gridcell postprocessing. Results based on multiple evaluation metrics show that SMoC performs well in calibrating both forecasts of light and no precipitation events and forecasts at long lead times. Compared with the gridcell-by-gridcell postprocessing, SMoC produces ensemble forecasts with similar forecast skill, improved forecast reliability, and clearly better spatial structures. In addition, SMoC is computationally far more efficient.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.