{"title":"动态加载下TeO2晶体的mueller -矩阵应力映射","authors":"D.D. Khokhlov, A.A. Bykov, A.Yu. Marchenkov, Yu.V. Pisarevsky, Ya.A. Eliovich, V.I. Akkuratov, A.A. Khvostov","doi":"10.26583/sv.15.3.11","DOIUrl":null,"url":null,"abstract":"Components of optoelectronic devices installed in aircrafts and space vehicles experience significant mechanical loads during their operation. Excessive and cyclic loads may lead to the defect growth or the fatigue failure. In this paper, we describe a non-destructive imaging technique for stress mapping in anisotropic crystalline materials during bench test. The technique is based on Mueller-matrix imaging and the material photoelasticity. The results of experimental studies for two observation directions coinciding with different crystallographic axes of TeO2 are presented. Main limitations and further potential development of the technique are discussed.","PeriodicalId":38328,"journal":{"name":"Scientific Visualization","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mueller-Matrix Stress Mapping in TeO2 Crystals Under Dynamic Loading\",\"authors\":\"D.D. Khokhlov, A.A. Bykov, A.Yu. Marchenkov, Yu.V. Pisarevsky, Ya.A. Eliovich, V.I. Akkuratov, A.A. Khvostov\",\"doi\":\"10.26583/sv.15.3.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Components of optoelectronic devices installed in aircrafts and space vehicles experience significant mechanical loads during their operation. Excessive and cyclic loads may lead to the defect growth or the fatigue failure. In this paper, we describe a non-destructive imaging technique for stress mapping in anisotropic crystalline materials during bench test. The technique is based on Mueller-matrix imaging and the material photoelasticity. The results of experimental studies for two observation directions coinciding with different crystallographic axes of TeO2 are presented. Main limitations and further potential development of the technique are discussed.\",\"PeriodicalId\":38328,\"journal\":{\"name\":\"Scientific Visualization\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26583/sv.15.3.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/sv.15.3.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Mueller-Matrix Stress Mapping in TeO2 Crystals Under Dynamic Loading
Components of optoelectronic devices installed in aircrafts and space vehicles experience significant mechanical loads during their operation. Excessive and cyclic loads may lead to the defect growth or the fatigue failure. In this paper, we describe a non-destructive imaging technique for stress mapping in anisotropic crystalline materials during bench test. The technique is based on Mueller-matrix imaging and the material photoelasticity. The results of experimental studies for two observation directions coinciding with different crystallographic axes of TeO2 are presented. Main limitations and further potential development of the technique are discussed.