基于旋翼多级微通道结构的超冷技术

Q2 Engineering
Yunna SUN, Yan WANG, 闯北 马, 涵 蔡, 艳 王, 桂甫 丁
{"title":"基于旋翼多级微通道结构的超冷技术","authors":"Yunna SUN, Yan WANG, 闯北 马, 涵 蔡, 艳 王, 桂甫 丁","doi":"10.1360/ssi-2022-0342","DOIUrl":null,"url":null,"abstract":"In view of the increasingly serious heat dissipation problem caused by the development of electronic devices towards higher power and higher integration, a rotor-wing microchannel heat sink is designed in this paper. Based on the good shunt characteristics of the rotor-wing microchannel, the characteristic design of the multi-order microchannel is proposed, which expands the design idea of the radiation microchannel. Through this research, it is found that the convective heat transfer area, the fluid-solid duty cycle and the channel layout of the microchannel are synergistically coupled to enhance the cooling capacity, and the change of these three items cannot achieve a single change, which increases the coupling factor between the three. In order to take into account the cooling capacity and pressure drop of the heat sink, a further design of functional four outlets is proposed, which systematically improves the cooling capacity and reduces the pressure drop of the heat sink. The thermal resistance distribution ratio of different microchannel heat sinks is systematically analyzed by finite element simulation and theoretical method, which points out the direction for further improving the cooling capacity. The rotor-wing multi-order microchannel heat sink was fabricated by the micromachining process. Finally, the cooling capacity of different designs was verified by experimental tests and can reach 932.08 W/cm 2 , laying the foundation for replacing the traditional water-cooled plate cooling system.","PeriodicalId":52316,"journal":{"name":"中国科学:信息科学","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super cooling technology based on rotor-wing multi-order microchannel structure\",\"authors\":\"Yunna SUN, Yan WANG, 闯北 马, 涵 蔡, 艳 王, 桂甫 丁\",\"doi\":\"10.1360/ssi-2022-0342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the increasingly serious heat dissipation problem caused by the development of electronic devices towards higher power and higher integration, a rotor-wing microchannel heat sink is designed in this paper. Based on the good shunt characteristics of the rotor-wing microchannel, the characteristic design of the multi-order microchannel is proposed, which expands the design idea of the radiation microchannel. Through this research, it is found that the convective heat transfer area, the fluid-solid duty cycle and the channel layout of the microchannel are synergistically coupled to enhance the cooling capacity, and the change of these three items cannot achieve a single change, which increases the coupling factor between the three. In order to take into account the cooling capacity and pressure drop of the heat sink, a further design of functional four outlets is proposed, which systematically improves the cooling capacity and reduces the pressure drop of the heat sink. The thermal resistance distribution ratio of different microchannel heat sinks is systematically analyzed by finite element simulation and theoretical method, which points out the direction for further improving the cooling capacity. The rotor-wing multi-order microchannel heat sink was fabricated by the micromachining process. Finally, the cooling capacity of different designs was verified by experimental tests and can reach 932.08 W/cm 2 , laying the foundation for replacing the traditional water-cooled plate cooling system.\",\"PeriodicalId\":52316,\"journal\":{\"name\":\"中国科学:信息科学\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国科学:信息科学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1360/ssi-2022-0342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国科学:信息科学","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/ssi-2022-0342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super cooling technology based on rotor-wing multi-order microchannel structure
In view of the increasingly serious heat dissipation problem caused by the development of electronic devices towards higher power and higher integration, a rotor-wing microchannel heat sink is designed in this paper. Based on the good shunt characteristics of the rotor-wing microchannel, the characteristic design of the multi-order microchannel is proposed, which expands the design idea of the radiation microchannel. Through this research, it is found that the convective heat transfer area, the fluid-solid duty cycle and the channel layout of the microchannel are synergistically coupled to enhance the cooling capacity, and the change of these three items cannot achieve a single change, which increases the coupling factor between the three. In order to take into account the cooling capacity and pressure drop of the heat sink, a further design of functional four outlets is proposed, which systematically improves the cooling capacity and reduces the pressure drop of the heat sink. The thermal resistance distribution ratio of different microchannel heat sinks is systematically analyzed by finite element simulation and theoretical method, which points out the direction for further improving the cooling capacity. The rotor-wing multi-order microchannel heat sink was fabricated by the micromachining process. Finally, the cooling capacity of different designs was verified by experimental tests and can reach 932.08 W/cm 2 , laying the foundation for replacing the traditional water-cooled plate cooling system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国科学:信息科学
中国科学:信息科学 Engineering-Engineering (miscellaneous)
CiteScore
2.50
自引率
0.00%
发文量
1961
期刊介绍: Scientia Sinica Informationis, founded in 2009, is a journal supervised by the Chinese Academy of Sciences and sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal strives to publish Chinese articles of the highest academic level in the field of information science, and report original results of basic and applied research in computer science and technology, control science and control engineering, communication and information systems, electronic science and technology. It promotes the development of information science and technology, builds a bridge between theory and technology application, and promotes cross-fertilisation with various disciplines and industries. The journal is published monthly on the 20th of each month. Scientia Sinica Informationis is currently indexed in SCOPUS, China Science Citation Database (CSCD), CITIC Core Journals of Chinese Science and Technology (Source Journals of Chinese Science and Technology Papers Statistics), Chinese Core Journals (Beida Core), China Science and Technology Papers and Citation Database (CSTPC), and so on. Database (CSTPC).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信