5-氨基乙酰丙酸光动力疗法联合姜黄素的疗效

Siu Kan Law
{"title":"5-氨基乙酰丙酸光动力疗法联合姜黄素的疗效","authors":"Siu Kan Law","doi":"10.32598/pbr.9.3.1057.2","DOIUrl":null,"url":null,"abstract":"5-Aminolevulinic acid (5-ALA) is the mitochondria metabolite produced from glycine and succinyl-CoA, which is converted to protoporphyrin IX (PpIX) by the conjugation of eight itself molecules forming the “heme” group in the porphyrin ring (Figure 1) [1]. The PpIX is used as a photosensitizer (PS) with an absorption wavelength of 410 nm, and 5-ALA acts as a precursor or prodrug for PpIX in photodynamic therapy (PDT). Exogenous administration of excessive amounts of 5-ALA increases the production of PpIX during heme biosynthesis. It is eliminated after 24-48 h with a lower risk of long-term photosensitivity [2]. However, ALA/PDT has several disadvantages. For instance, the concentration of ALA is affected by its absorption and pharmacokinetics that do not fully cover the treatment area [3-5]. It also limits the depth of tumor penetration and causes pain [6].","PeriodicalId":6323,"journal":{"name":"2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of 5-aminolevulinic Acid-mediated Photodynamic Therapy Combined With Curcumin\",\"authors\":\"Siu Kan Law\",\"doi\":\"10.32598/pbr.9.3.1057.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5-Aminolevulinic acid (5-ALA) is the mitochondria metabolite produced from glycine and succinyl-CoA, which is converted to protoporphyrin IX (PpIX) by the conjugation of eight itself molecules forming the “heme” group in the porphyrin ring (Figure 1) [1]. The PpIX is used as a photosensitizer (PS) with an absorption wavelength of 410 nm, and 5-ALA acts as a precursor or prodrug for PpIX in photodynamic therapy (PDT). Exogenous administration of excessive amounts of 5-ALA increases the production of PpIX during heme biosynthesis. It is eliminated after 24-48 h with a lower risk of long-term photosensitivity [2]. However, ALA/PDT has several disadvantages. For instance, the concentration of ALA is affected by its absorption and pharmacokinetics that do not fully cover the treatment area [3-5]. It also limits the depth of tumor penetration and causes pain [6].\",\"PeriodicalId\":6323,\"journal\":{\"name\":\"2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32598/pbr.9.3.1057.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/pbr.9.3.1057.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

5-氨基乙酰丙酸(5-ALA)是由甘氨酸和琥珀酰辅酶a产生的线粒体代谢物,通过8个自身分子偶联在卟啉环上形成“血红素”基团,转化为原卟啉IX (PpIX)(图1)[1]。PpIX被用作光敏剂(PS),吸收波长为410 nm, 5-ALA在光动力治疗(PDT)中作为PpIX的前体或前药。外源性给药过量的5-ALA增加血红素生物合成过程中PpIX的产生。24-48 h后消除,长期光敏性风险较低[2]。然而,ALA/PDT有几个缺点。例如,ALA的浓度受到其吸收和药代动力学的影响,而这些吸收和药代动力学并没有完全覆盖治疗区域[3-5]。它还限制了肿瘤的渗透深度并引起疼痛[6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effectiveness of 5-aminolevulinic Acid-mediated Photodynamic Therapy Combined With Curcumin
5-Aminolevulinic acid (5-ALA) is the mitochondria metabolite produced from glycine and succinyl-CoA, which is converted to protoporphyrin IX (PpIX) by the conjugation of eight itself molecules forming the “heme” group in the porphyrin ring (Figure 1) [1]. The PpIX is used as a photosensitizer (PS) with an absorption wavelength of 410 nm, and 5-ALA acts as a precursor or prodrug for PpIX in photodynamic therapy (PDT). Exogenous administration of excessive amounts of 5-ALA increases the production of PpIX during heme biosynthesis. It is eliminated after 24-48 h with a lower risk of long-term photosensitivity [2]. However, ALA/PDT has several disadvantages. For instance, the concentration of ALA is affected by its absorption and pharmacokinetics that do not fully cover the treatment area [3-5]. It also limits the depth of tumor penetration and causes pain [6].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信