变制冷剂流量和变风量两种不同暖通空调系统的建筑节能数值分析

Q4 Materials Science
{"title":"变制冷剂流量和变风量两种不同暖通空调系统的建筑节能数值分析","authors":"","doi":"10.17756/nwj.2023-s2-066","DOIUrl":null,"url":null,"abstract":"Variable refrigerant flow (VRF) and variable air volume (VAV) systems are considered among the best heating, ventilation, and air conditioning systems (HVAC) thanks to their ability to provide cooling and heating in different thermal zones of the same building. As well as their ability to recover the heat rejected from spaces requiring cooling and reuse it to heat another space. Nevertheless, at the same time, these systems are considered one of the most energy-consuming systems in the building. So, it is crucial to well size the system according to the building’s cooling and heating needs and the indoor temperature fluctuations. This study aims to compare these two energy systems by conducting an energy model simulation of a real building under a semi-arid climate for cooling and heating periods. The developed building energy model (BEM) was validated and calibrated using measured and simulated indoor air temperature and energy consumption data. The study aims to evaluate the effect of these HVAC systems on energy consumption and the indoor thermal comfort of the building. The numerical model was based on the Energy Plus simulation engine. The approach used in this paper has allowed us to reach significant quantitative energy saving along with a high level of indoor thermal comfort by using the VRF system compared to the VAV system. The findings prove that the VRF system provides 46.18% of the annual total heating energy savings and 6.14% of the annual cooling and ventilation energy savings compared to the VAV system.","PeriodicalId":36802,"journal":{"name":"NanoWorld Journal","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of the Building Energy Efficiency Using Two Different HVAC Systems: Variable Refrigerant Flow and Variable Air Volume Technologies\",\"authors\":\"\",\"doi\":\"10.17756/nwj.2023-s2-066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variable refrigerant flow (VRF) and variable air volume (VAV) systems are considered among the best heating, ventilation, and air conditioning systems (HVAC) thanks to their ability to provide cooling and heating in different thermal zones of the same building. As well as their ability to recover the heat rejected from spaces requiring cooling and reuse it to heat another space. Nevertheless, at the same time, these systems are considered one of the most energy-consuming systems in the building. So, it is crucial to well size the system according to the building’s cooling and heating needs and the indoor temperature fluctuations. This study aims to compare these two energy systems by conducting an energy model simulation of a real building under a semi-arid climate for cooling and heating periods. The developed building energy model (BEM) was validated and calibrated using measured and simulated indoor air temperature and energy consumption data. The study aims to evaluate the effect of these HVAC systems on energy consumption and the indoor thermal comfort of the building. The numerical model was based on the Energy Plus simulation engine. The approach used in this paper has allowed us to reach significant quantitative energy saving along with a high level of indoor thermal comfort by using the VRF system compared to the VAV system. The findings prove that the VRF system provides 46.18% of the annual total heating energy savings and 6.14% of the annual cooling and ventilation energy savings compared to the VAV system.\",\"PeriodicalId\":36802,\"journal\":{\"name\":\"NanoWorld Journal\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoWorld Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17756/nwj.2023-s2-066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoWorld Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17756/nwj.2023-s2-066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Analysis of the Building Energy Efficiency Using Two Different HVAC Systems: Variable Refrigerant Flow and Variable Air Volume Technologies
Variable refrigerant flow (VRF) and variable air volume (VAV) systems are considered among the best heating, ventilation, and air conditioning systems (HVAC) thanks to their ability to provide cooling and heating in different thermal zones of the same building. As well as their ability to recover the heat rejected from spaces requiring cooling and reuse it to heat another space. Nevertheless, at the same time, these systems are considered one of the most energy-consuming systems in the building. So, it is crucial to well size the system according to the building’s cooling and heating needs and the indoor temperature fluctuations. This study aims to compare these two energy systems by conducting an energy model simulation of a real building under a semi-arid climate for cooling and heating periods. The developed building energy model (BEM) was validated and calibrated using measured and simulated indoor air temperature and energy consumption data. The study aims to evaluate the effect of these HVAC systems on energy consumption and the indoor thermal comfort of the building. The numerical model was based on the Energy Plus simulation engine. The approach used in this paper has allowed us to reach significant quantitative energy saving along with a high level of indoor thermal comfort by using the VRF system compared to the VAV system. The findings prove that the VRF system provides 46.18% of the annual total heating energy savings and 6.14% of the annual cooling and ventilation energy savings compared to the VAV system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NanoWorld Journal
NanoWorld Journal Materials Science-Polymers and Plastics
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信