戊二醛交联剂对粘胶非织造布-聚乙烯醇柔性复合材料性能的影响

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD
HARWINDER SINGH, AROBINDO CHATTERJEE, NIDHI YADAV
{"title":"戊二醛交联剂对粘胶非织造布-聚乙烯醇柔性复合材料性能的影响","authors":"HARWINDER SINGH, AROBINDO CHATTERJEE, NIDHI YADAV","doi":"10.35812/cellulosechemtechnol.2023.57.76","DOIUrl":null,"url":null,"abstract":"In recent years, researchers and industries have made efforts to decrease the reliance on fossil fuel-based materials due to the rise in environmental consciousness. A potential environmentally friendly alternative to petroleum-based, non-biodegradable polymeric materials is known to be natural fiber-reinforced polymer composites. Polyvinyl alcohol (PVA) is a biodegradable synthetic polymer that is water-soluble, easy to use, having film-formation property and good potential as a biodegradable matrix in environmentally friendly composites. The objective of this work has been to create a versatile, lightweight, flexible bio-composite based on nonwoven viscose fabric using PVA and a crosslinking agent (glutaraldehyde), and to analyze the effects of the crosslinking agent and of the nonwoven viscose filler in the PVA matrix on the mechanical and UV properties of the composite. The structural, chemical and mechanical properties of the composite were investigated using FTIR, and tensile and UV testing. The results showed that the composite exhibited high tensile strength, but with a drop in elongation. FTIR verified the interaction of the two polymers in the composites. The flexible bio-composite can be potentially used for food packaging applications.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":"223 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPACT OF GLUTARALDEHYDE CROSSLINKING AGENT ON THE PROPERTIES OF NONWOVEN VISCOSE FABRIC–POLYVINYL ALCOHOL FLEXIBLE COMPOSITES\",\"authors\":\"HARWINDER SINGH, AROBINDO CHATTERJEE, NIDHI YADAV\",\"doi\":\"10.35812/cellulosechemtechnol.2023.57.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, researchers and industries have made efforts to decrease the reliance on fossil fuel-based materials due to the rise in environmental consciousness. A potential environmentally friendly alternative to petroleum-based, non-biodegradable polymeric materials is known to be natural fiber-reinforced polymer composites. Polyvinyl alcohol (PVA) is a biodegradable synthetic polymer that is water-soluble, easy to use, having film-formation property and good potential as a biodegradable matrix in environmentally friendly composites. The objective of this work has been to create a versatile, lightweight, flexible bio-composite based on nonwoven viscose fabric using PVA and a crosslinking agent (glutaraldehyde), and to analyze the effects of the crosslinking agent and of the nonwoven viscose filler in the PVA matrix on the mechanical and UV properties of the composite. The structural, chemical and mechanical properties of the composite were investigated using FTIR, and tensile and UV testing. The results showed that the composite exhibited high tensile strength, but with a drop in elongation. FTIR verified the interaction of the two polymers in the composites. The flexible bio-composite can be potentially used for food packaging applications.\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\"223 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2023.57.76\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.76","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于环保意识的增强,研究人员和工业界都在努力减少对化石燃料材料的依赖。天然纤维增强聚合物复合材料是石油基、不可生物降解聚合物材料的潜在环保替代品。聚乙烯醇(PVA)是一种生物可降解的合成聚合物,具有水溶性、易使用、成膜性好等特点,在环境友好型复合材料中具有良好的生物降解基质潜力。本工作的目的是利用PVA和交联剂(戊二醛)在非织造粘胶织物的基础上创造一种多功能、轻质、柔性的生物复合材料,并分析交联剂和PVA基体中非织造粘胶填料对复合材料力学性能和紫外线性能的影响。利用红外光谱、拉伸和紫外测试对复合材料的结构、化学和力学性能进行了研究。结果表明,该复合材料具有较高的抗拉强度,但伸长率下降。FTIR验证了复合材料中两种聚合物的相互作用。柔性生物复合材料可以潜在地用于食品包装应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPACT OF GLUTARALDEHYDE CROSSLINKING AGENT ON THE PROPERTIES OF NONWOVEN VISCOSE FABRIC–POLYVINYL ALCOHOL FLEXIBLE COMPOSITES
In recent years, researchers and industries have made efforts to decrease the reliance on fossil fuel-based materials due to the rise in environmental consciousness. A potential environmentally friendly alternative to petroleum-based, non-biodegradable polymeric materials is known to be natural fiber-reinforced polymer composites. Polyvinyl alcohol (PVA) is a biodegradable synthetic polymer that is water-soluble, easy to use, having film-formation property and good potential as a biodegradable matrix in environmentally friendly composites. The objective of this work has been to create a versatile, lightweight, flexible bio-composite based on nonwoven viscose fabric using PVA and a crosslinking agent (glutaraldehyde), and to analyze the effects of the crosslinking agent and of the nonwoven viscose filler in the PVA matrix on the mechanical and UV properties of the composite. The structural, chemical and mechanical properties of the composite were investigated using FTIR, and tensile and UV testing. The results showed that the composite exhibited high tensile strength, but with a drop in elongation. FTIR verified the interaction of the two polymers in the composites. The flexible bio-composite can be potentially used for food packaging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellulose Chemistry and Technology
Cellulose Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
2.30
自引率
23.10%
发文量
81
审稿时长
7.3 months
期刊介绍: Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry. Topics include: • studies of structure and properties • biological and industrial development • analytical methods • chemical and microbiological modifications • interactions with other materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信