分析了基于公民福利数据的模糊c -手段和歧视性集群

Moh. Wahyu Warolemba, Resmawan Resmawan, Dewi Rahmawaty Isa
{"title":"分析了基于公民福利数据的模糊c -手段和歧视性集群","authors":"Moh. Wahyu Warolemba, Resmawan Resmawan, Dewi Rahmawaty Isa","doi":"10.35580/sainsmat122446492023","DOIUrl":null,"url":null,"abstract":"Cluster analysis is a multivariate method that aims to classify objects into a cluster based on different characteristics. The statistical technique that can be used for clustering is Fuzzy C-means (FCM). The FCM uses membership degree to determine the existence of each data point in a cluster. To ensure accurate clustering and that the criteria are met, cluster validation must be done to produce good data clustering. Moreover, this study uses a discriminant analysis test to validate the results of cluster solutions. The study aims to classify 34 provinces in Indonesia based on the level of people's welfare. The data used in this study is data on indicators of people's welfare in Indonesia in 2021. The variables used in this study were age/life expectancy, the average length of schooling, the 16-18 years of enrollment, and households with proper access to water. Based on the study results, two clusters were formed: cluster 1, areas with low people’s welfare indicator values in 16 provinces, and Cluster 2, regions with high people's welfare indicator values in 18 provinces.","PeriodicalId":31814,"journal":{"name":"Sainsmat","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Cluster Fuzzy C-Means dan Diskriminan untuk Pengelompokan Data Kesejahteraan Rakyat\",\"authors\":\"Moh. Wahyu Warolemba, Resmawan Resmawan, Dewi Rahmawaty Isa\",\"doi\":\"10.35580/sainsmat122446492023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster analysis is a multivariate method that aims to classify objects into a cluster based on different characteristics. The statistical technique that can be used for clustering is Fuzzy C-means (FCM). The FCM uses membership degree to determine the existence of each data point in a cluster. To ensure accurate clustering and that the criteria are met, cluster validation must be done to produce good data clustering. Moreover, this study uses a discriminant analysis test to validate the results of cluster solutions. The study aims to classify 34 provinces in Indonesia based on the level of people's welfare. The data used in this study is data on indicators of people's welfare in Indonesia in 2021. The variables used in this study were age/life expectancy, the average length of schooling, the 16-18 years of enrollment, and households with proper access to water. Based on the study results, two clusters were formed: cluster 1, areas with low people’s welfare indicator values in 16 provinces, and Cluster 2, regions with high people's welfare indicator values in 18 provinces.\",\"PeriodicalId\":31814,\"journal\":{\"name\":\"Sainsmat\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sainsmat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35580/sainsmat122446492023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sainsmat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35580/sainsmat122446492023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析是一种多变量分析方法,目的是根据不同的特征将对象分类到一个聚类中。可用于聚类的统计技术是模糊c均值(FCM)。FCM使用隶属度来确定集群中每个数据点的存在性。为了确保准确的聚类并满足标准,必须进行聚类验证以产生良好的数据聚类。此外,本研究使用判别分析检验来验证聚类解的结果。该研究旨在根据人民的福利水平对印度尼西亚的34个省进行分类。本研究使用的数据是2021年印度尼西亚人民福利指标的数据。本研究中使用的变量是年龄/预期寿命、平均受教育时间、16-18岁的入学年龄以及获得适当水的家庭。根据研究结果,形成了两个集群:集群1为16个省的低民生指标值地区,集群2为18个省的高民生指标值地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Cluster Fuzzy C-Means dan Diskriminan untuk Pengelompokan Data Kesejahteraan Rakyat
Cluster analysis is a multivariate method that aims to classify objects into a cluster based on different characteristics. The statistical technique that can be used for clustering is Fuzzy C-means (FCM). The FCM uses membership degree to determine the existence of each data point in a cluster. To ensure accurate clustering and that the criteria are met, cluster validation must be done to produce good data clustering. Moreover, this study uses a discriminant analysis test to validate the results of cluster solutions. The study aims to classify 34 provinces in Indonesia based on the level of people's welfare. The data used in this study is data on indicators of people's welfare in Indonesia in 2021. The variables used in this study were age/life expectancy, the average length of schooling, the 16-18 years of enrollment, and households with proper access to water. Based on the study results, two clusters were formed: cluster 1, areas with low people’s welfare indicator values in 16 provinces, and Cluster 2, regions with high people's welfare indicator values in 18 provinces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信