一种用于三二极管PV模型参数辨识的改进光谱优化器

Safaa Saber, Sara Salem
{"title":"一种用于三二极管PV模型参数辨识的改进光谱优化器","authors":"Safaa Saber, Sara Salem","doi":"10.61185/smij.2023.44105","DOIUrl":null,"url":null,"abstract":"Over the last few decades, researchers have paid attention to finding an effective and efficient metaheuristic algorithm that can determine the ideal parameters for PV models. In this study, to determine the TDM’s nine unknown parameters, we will examine the efficacy of a recently proposed metaheuristic algorithm called light spectrum optimizer (LSO). To further enhance the effectiveness of LSO in estimating those unknown parameters, a new improved variant called ILSO is developed. This variant employs LSO in conjunction with two newly developed update systems to improve its exploration and exploitation operators. We compare the best fitness value, worst fitness value, average fitness, standard deviation, and p-value returned by the Wilcoxon rank-sum test obtained by LSO and ILSO to those of three recently published competitors when estimating the nine unknown parameters for the Photowatt-PWP201 module and the RTC France solar cell. The experimental findings show that ILSO is the most efficient.","PeriodicalId":148129,"journal":{"name":"Sustainable Machine Intelligence Journal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Light Spectrum Optimizer for Parameter Identification of Triple-Diode PV Model\",\"authors\":\"Safaa Saber, Sara Salem\",\"doi\":\"10.61185/smij.2023.44105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last few decades, researchers have paid attention to finding an effective and efficient metaheuristic algorithm that can determine the ideal parameters for PV models. In this study, to determine the TDM’s nine unknown parameters, we will examine the efficacy of a recently proposed metaheuristic algorithm called light spectrum optimizer (LSO). To further enhance the effectiveness of LSO in estimating those unknown parameters, a new improved variant called ILSO is developed. This variant employs LSO in conjunction with two newly developed update systems to improve its exploration and exploitation operators. We compare the best fitness value, worst fitness value, average fitness, standard deviation, and p-value returned by the Wilcoxon rank-sum test obtained by LSO and ILSO to those of three recently published competitors when estimating the nine unknown parameters for the Photowatt-PWP201 module and the RTC France solar cell. The experimental findings show that ILSO is the most efficient.\",\"PeriodicalId\":148129,\"journal\":{\"name\":\"Sustainable Machine Intelligence Journal\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Machine Intelligence Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61185/smij.2023.44105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Machine Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61185/smij.2023.44105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,研究人员一直致力于寻找一种有效的、高效的元启发式算法来确定PV模型的理想参数。在本研究中,为了确定TDM的九个未知参数,我们将检验最近提出的一种称为光谱优化器(LSO)的元启发式算法的有效性。为了进一步提高LSO估计这些未知参数的有效性,开发了一种新的改进的LSO变体。该变体采用了LSO与两种新开发的更新系统相结合,以改善其勘探和开发操作人员。在估计Photowatt-PWP201组件和RTC法国太阳能电池的9个未知参数时,我们将LSO和ILSO获得的Wilcoxon秩和检验返回的最佳适应度值、最差适应度值、平均适应度、标准差和p值与最近发表的三个竞争对手的结果进行比较。实验结果表明,ILSO是最有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Light Spectrum Optimizer for Parameter Identification of Triple-Diode PV Model
Over the last few decades, researchers have paid attention to finding an effective and efficient metaheuristic algorithm that can determine the ideal parameters for PV models. In this study, to determine the TDM’s nine unknown parameters, we will examine the efficacy of a recently proposed metaheuristic algorithm called light spectrum optimizer (LSO). To further enhance the effectiveness of LSO in estimating those unknown parameters, a new improved variant called ILSO is developed. This variant employs LSO in conjunction with two newly developed update systems to improve its exploration and exploitation operators. We compare the best fitness value, worst fitness value, average fitness, standard deviation, and p-value returned by the Wilcoxon rank-sum test obtained by LSO and ILSO to those of three recently published competitors when estimating the nine unknown parameters for the Photowatt-PWP201 module and the RTC France solar cell. The experimental findings show that ILSO is the most efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信